DATA $° Collaborative
§|N‘w c on Administrative Data

Technical Document to Modernize IT
architecture in NSO/NSS using open-source
technology stack

Technical Requirements

i_? Organizational Workflows

Stakeholder Needs
2R

Modern IT
Architecture
Dimensions

§¢§ Cross-Departmental

Collaboration

:% Data Management

o]
ﬁ Capacity Building

6/18/2025

DATA ® ° Collaborative
§|NQW c on Administrative Data

ABOUT THIS DOCUMENT:

This document is meant to be a living document that will change along with changes in an ever-
evolving IT world. This document is developed by UN Statistics Division (UNSD) under the “Data For
Now” and the “Collaborative on the use of Administrative Data for statistics”. It consolidates

concepts and tools to provide a basis to assess feasibility for modernizing IT architecture to
incorporate new data sources at national statistical offices (NSOs) using free and open-source
technology stacks and to help implement practical deployment of select components of a minimum
data lake technology stack. We have tried to make this a practical document to support IT teams in
NSOs, keeping it short and to the point - with the potential risk that some information is omitted or
not researched well enough. Please note this space is fast evolving and therefore this document
should be used in conjunction with additional resources to meet your organizations’ needs.

While statistical processes such as data cleaning, modeling, anonymization, quality assurance,
standardization, and record linkage, along with statistical methodologies, are crucial components of
the statistics data lifecycle, they are not the focus of this document.

The views expressed in this wiki document are those of the authors and do not necessarily
represent the views of UNSD, the United Nations, or any of its affiliated organizations. For list of
any errors or omissions, please contact statistics@un.org.

ACKNOWLEDGEMENTS:
Document lead: Samrat Maskey
Document authors: Samrat Maskey, Thomas Aristide, Luis Gerardo Gonzalez Morales

Overall guidance: Luis Gerardo Gonzalez Morales, Sean Lovell, Vibeke Oestreich Nielsen, Faryal
Ahmed, Eric Aloysius Jacobus Johannes Deeben ...

Content refined: Generative Al tools including ChatGPT, Microsoft Copilot, Claud
© 2025 United Nations
All rights reserved

Version: Draft 1

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/
mailto:statistics@un.org

DATA ® ° Collaborative
§|NQW c on Administrative Data

Table of Contents

EXECUTIVE SUMIMAIY ettt ettt et ee e eaetnreeenseeenetesastnsessnseesnsessnssnsnssnsessnsessnssssassnsassnsessnsensnsnns 1
)R [0 1 oo [¥ ot o] o TR PP OPPTPPR 3
1.1 BACKEIOUNG «.eeeiiiiiiei ettt et et et s et et s et s et s eae s eansaansasnsannsannsannsannsannsennsennns 3
1.2 Gl -1 I3 TaTe le] o [=Tot 41V RSP RURPEN 6
1.3 Guiding principles for the modernization of IT architecture........ccceevueiiiiii i, 6
1.4 Reference architecture for data inNOVAtioNiiiuniiiiiiiiii e 7
2 Few components of open technology stack for data.........ceevueiiiiiiiiiiiiii e, 12
2.1 OVBIVIBW. .ttt ettt et e s eea et s et e e e ean s ean s ean e ean s eaneeneaneenseensennsenns 12
2.2 Data iNGESTION/COIECLION c.uuiiiieiie et e e et e et e e e e e e et eeeaeeraaeeaneessaeeenneanes 13
2.3 Data storage and MaN@ZEMENT.....iiu it eiie et ettt ieetieeteeteette et et etnaetneernesenassnassnassnessnessnasens 15
2.4 Data processing and @analyiCS .. .uu.iiniii it e et et e a et e e e e eaas 20
2.5 Data visualization and disSemiNationcoeiuuuiiiiiiiiii et eeeee et e e 21
2.6 Security and AULNOIIZAtioNen ittt e e e e st et et ea e e e e e e ens 22
2.7 DevOPs and CoNtaiNEriZation ... e iiue i it iie et ee et ete et et eeneeeaeeenesnaseenssensennssnnsenns 23
3 Basic requirements for minimum data lake technology stack used in DatadNoOwccccccevevniivnennnenn. 25
3.1 L0 Y=Y o= PPN 25
3.2 Y L =T TU T = 0 =T o £ ROt 25
33 [1 (o T 0 VO TP PSPPI 27
3.4 (0] o1 = 11 = VS (=] 4 F O PP O TP PPPRN 27
3.5 L E 1o Y ol g Lo [=T g 1T o A PSP 28
3.6 Sample use-case to estimate Hardware requir€mMentceeeiuiiiiiiiiiiieiee e e e e e e e eeaaas 31
4 CASES STUAIES ..ueieiiiiiiieie ettt ettt et e e e et ettt s e b et et e ta e et seta s ea s e ta e ran s etnaaes 32
5 Technical implementation guide for minimum data lake technology stack used in Data4Now............. 33
5.1 OVEIVIBW . .uuiiiiiiiiiiiiii ittt ettt et st et s e bt e e b b s eaae s eras s eaaeserassstaneserasseranssennes 33
5.2 (603 T= ol 1) A PP PRSP PPPRRR 35
5.3 (DT o] (o) o =T o | USSP 36
O Y 1 1< PP PPROPPPN i
Al DatadNow: IT GUIdING QUESTIONNAINE.....iiuiiiiiiiieeie ettt etee e eieete et et st et stnesneenesrassnsensansenssnennns i
A2 [BF = I TaY == 1 (o] g T o Lo | KO iv
A3 B L I o] =Y ={< (o] 01 1 1=} AP RPRPRRR: v
A4 Data VIrtUAlIZationeeeeeneieeiiee e ettt e e et e e e e et e e s eenens Vi
A5 (DTl o] foTol=t T [oY= o To] £ RPN vii
A6 Data orchestration tOOISceuu it ettt e e et e e X
A7 Security and aULNOIIZAtioNve i e et e et e a e e e aaas xi

DATA ® ° Collaborative
§|NQW c on Administrative Data

A8 KUDEINELES CIUSTEN ..ttt et e e s e et e e eeene s eenenae s eenens Xix
A9 Kubernetes cluster management platformcoou i XXi
A.10 Minimum data lake technology stack for DatadNow deployment checklistccceeveiiniiinnnnnss xxiii
A.11 Sample skill development recommendations for IT teamscvvueiiiiiiiiiiiiie e eeees XXV
2 1S o) Y o] o T AV oY d o T PP PTPPPPPR XXVi

List of Figures

Figure 1-1 Minimum data lake technology stack used in DatadNOWcccuuieiiiiiiiiiiiiiiiie et e e, 4
Figure 1-2 Unveiling modern IT architecture dimensioNns........cccuiieiiiieiiii et e e e e e eeeeens 5
Figure 1-3 Data FOr NOW GUIdING PrinCiPle couuieeiii it e et e et e et e e e e et e e e e e e e eanaeans 7
Figure 1-4 Unified data infrastructure architecture 2.0 - Andreessen HOrowitz........ccc.cceeeeievneeenieieennnennnnnn. 8
Figure 1-5 Simplified reference data lake ArchiteCtUre........cevniiniiiiii e e e 9
Figure 2-1 Overview of select tools discussed in different components of the data value chain................... 12
Figure 2-2 Data ingestion CONSIAEIatiONS. . ..u.iiu i ee ettt et e it et e et eraesaneettesnsannssnnssnnsannaes 13
Figure 2-3 Sample data buckets to Organize datacuiviiiiiiii it e e et e e e e e 19
Figure 5-1 Deployment of data platform - single Nnode clUSTer......ccuuiiiniiiiiii e 33
Figure 5-2 Deployment of data platform - multi-node ClUStErcuciiiiiiiiiie e 34
Figure 5-3 Kubernetes Infrastructure OVEIVIEWc..cieivuiiiiiiiiiniiiiiiiiiiiii e 35
Figure 5-4 Edit the KUBECONTIZ fileen ittt et e e e e e et e e e s saan e 45
Figure A-1 Active directory AdVanCe fEAtUIE ... ceu e ittt eeeae XVii
Figure A-2 Active Directory Distinguished Name fOr USEr.......cuoiiiiiiiiiiiiiiiiii e ee e e e aaes xviii

DATA ® ° Collaborative
§|NQW o on Administrative Data

Executive Summary

This guide supports National Statistical Offices (NSOs) in modernizing their IT architecture using a
modular, open-source data lake technology stack. The framework was developed under the "Data
for Now" initiative along with experience shared through the “Collaborative on use of Admin Data
for statistics” to help NSOs integrate innovative data sources alongside traditional statistical data,
enabling the production of timely, disaggregated, and high-quality statistics for sustainable
development.

The Challenge

Today’s statistical offices are expected to do more than just run censuses and surveys. They need to
tap into new/existing data sources like admin data, mobile phone records, satellite images, social
media, and more to use them for statistics. To handle this volume, variety, and veracity (3V’s) of
data, NSOs need a modern, secure, and interoperable IT infrastructure that supports the efficient
processing, integration, and analysis of multiple data types.

Proposed Solution
The document outlines a modular, scalable data lake architecture built on Free and Open-Source
Software (FOSS) principles. The minimum technology stack used includes:

e Apache NiFi for data ingestion and pipeline management

e MinlO for secure, scalable object storage

e JupyterHub for collaborative data processing and analysis

e Trino for flexible data virtualization

e Kubernetes for container orchestration and scalability

e Active Directory (if already in use) integration with the tools for identity and access

management

Implementation Experience
The framework has been successfully tested and deployed across multiple NSOs including:
e Colombia (DANE) and Senegal (ANSD) - initial assessments and requirements identification
for data lake platform (DANE using Hadoop; ANSD using proposed open-source stack)
e Vietnam (GSO), Namibia (NSA), Tunisia (INS) - Kubernetes deployments
e Maldives (MBS) - direct server deployment of storage

Key Benefits
Technical Advantages

e Cost-effective: Prioritizes FOSS solutions while remaining open to complementary
proprietary tools
e Scalable: Architecture grows from single-node to multi-node clusters based on
organizational needs
e Flexible: Supports both structured and unstructured data formats
e Secure: Implements robust authentication, authorization, and encryption mechanisms
Organizational Impact

DATA ® ° Collaborative
§|NQW o on Administrative Data

e Enhanced Data Processing: Improves efficiency through compressed storage formats like
Parquet, ORC, etc.

e Collaborative Environment: Enables cross-team collaboration through shared notebook
environments.

e Capacity Building: Strengthens in-house IT team capabilities for long-term sustainability.

Implementation Requirements
Infrastructure Specifications
Minimum hardware requirements scale based on concurrent users:
e Small deployment (5 users): 16 CPU cores, 32GB RAM, 500GB storage
e Medium deployment (25 users): 32 CPU cores, 128GB RAM, 1.5TB storage
e Large deployment (100 users): 128 CPU cores, 512GB RAM, 4TB storage
Essential Skills

e System administration (Linux/Ubuntu)

e Networking and security

e Infrastructure management and containerization
e Scripting and automation

e Data management and version control

Implementation Approach
A phased deployment strategy is recommended, allowing NSOs to gradually adopt components
based on priorities and capacity. The document provides:
e Current state assessment using “Data4Now: IT Guiding Questionnaire” (Annex) and identify
hardware, software, skillset requirements.

e Target architecture vision and verification if proposed IT architecture meets the needs.
e Detailed technical implementation guide with checklist.

e Skills development recommendations

e Good practices for data organization and access management

Future Considerations
As organizations mature, the architecture can incorporate additional components including:
e Data discovery and cataloging tools
e Advanced observability and monitoring
e Workflow management systems
e Artificial Intelligence and Machine Learning platforms

Conclusion

This IT modernization framework provides NSOs with a practical, tested approach to building
modern data infrastructure. By prioritizing open-source solutions, emphasizing capacity building,
and maintaining flexibility for future growth, the framework enables statistical offices to meet
evolving data demands while maintaining operational efficiency and data security. The successful
implementations across multiple countries demonstrate the framework's adaptability to diverse
organizational contexts and requirements.

DATA ® ° Collaborative
§|NQW c on Administrative Data

1 Introduction

1.1 Background

In this modern data age, the role of statistical offices has evolved significantly with the rapid growth
of digital technologies and the emergence of innovative data sources. Modern IT infrastructure has
become essential for statistical offices to collect, process, analyze, and disseminate both traditional
(census, survey, etc.) and non-traditional (administrative data, earth observation, mobile phone,
social media, sensors, etc.) data, which usually come in different sizes and formats.

Guided by the ‘Data for Now’ initiative, we developed and tested a modular IT architecture based

on a minimum data lake technology stack, with the aim to support the implementation of a
platform (like data innovation lab) to process innovative data and methods to produce statistical
indicators. It is based on experience from technical implementation of the Data for Now initiative
(DatadNow) and Development Accounts 13 (DA-13) in different countries. The work has also
benefited from the discussions with partners in task-team 3 (Technical interoperability and linking)
of the Collaborative on administrative data (CAD), UN Global Platform and the UN Economic and
Social Commission for Asia and the Pacific (UNESCAP).

The work began under Data4Now initiative, which supports members of the National Statistical
Systems (NSS) in participating countries to leverage innovative sources, technologies and methods
for the streamlined production and dissemination of better, more timely and disaggregated data
for sustainable development. During initial assessments to support the NSOs of Colombia (DANE)

and Senegal (ANSD) on the technology front, both countries independently identified similar cross-

cutting IT requirements, including the need for a data lake platform capable of storing diverse set of
datasets irrespective of their maturity level and technology specification. In parallel, work on IT
Architecture workstream under CAD compiled use-case of deployed IT Architecture along with tools
and technology used for collecting administrative data in NSOs from Mexico (INEGI), Uruguay (INE),
Colombia (DANE), Norway (Statistics Norway), Namibia (NSA) helped understand actual IT
architectures implemented at different NSOs. Building on these findings, a data lake technology

stack was proposed to new Data4dNow participating NSOs, with deployment platforms and
technology stacks tailored to their specific requirement. To facilitate this process, a ‘Data4Now: IT
Guiding Questionnaire’ was developed to Identify country-specific requirements and challenges,

particularly focusing on data flows within the technology landscape. This document, along with the
guestionnaire provides a basis to assess feasibility for new NSO aspiring to deploy a data lake
architecture.

A key consideration in deploying this architecture is aligning it with the organizations’ IT strategic
roadmap and establishing a skilled IT team to manage the administrative and platform operations.
This architecture not only strengthens the data engineering capabilities of IT teams within NSO but
also provides a Data Innovation Lab with robust and flexible foundation for integrating innovative
data sources and advanced data science methods into the production of official statistics.

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/guiding-principle
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/teamTasks3
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-story-colombia
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-architecture-senegal
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/sLU7NTx5JYOBNsOQghEu
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/u6nongpgLoMqyxCWt17z
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/Wmuc94Ks8t5jxLvIZEWq
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/jMqcomuN3RUagNKDZMGu

DATA ® ° Collaborative
§|NQW o on Administrative Data

The proposed data lake configuration represents a minimum setup, designed to balance
deployment and management efforts while remaining open to integration of additional tools and
components based on specific needs. The select technology stack was initially implemented in NSO
of Senegal (ANSD) using Docker Compose and later using Kubernetes in NSOs of Viet Nam (GSO),
Namibia (NSA), and Tunisia (INS), offering enhanced scalability, maintainability, and resilience while
remaining adaptable to specific needs of each NSO. However, in the case of NSO of Maldives (MBS),
one of the components was deployed directly in the server. There were gradual enhancements in
the implementation platform from docker to Kubernetes to multi-node Kubernetes cluster to
manage additional resources.

To ensure sustainability, Free and Open-Source Software (FOSS) principle is prioritized for its cost-
effectiveness, adaptability, and flexibility to evolve with technological advancements. For instance,
Apache NiFi is used for data ingestion as it provides a visual platform to create data pipelines with
minimal manual coding. MinlO provides a secure, scalable, and efficient data storage platform that
enables storage of new and innovative data formats while being simple to deploy and maintain.
JupyterHub facilitates advanced data processing workflows through collaborative notebook
environments using python and R, and Trino supports flexible data virtualization. ‘Figure 1-1
Minimum data lake technology stack used in Data4dNow’ highlights each stage of data flow and
respective technology stacks. We will explore each of these stages in coming sections.

Minimum Data Lake Technology Landscape

Integration, Transformation &

Data sources Ingestion Storage Analysis

PSS 0. o

a ®) t”no Open jupyter notebook
. Data
- Virtualization
sSTara GeoJSON nl ’ R
= = . Data
- Collection P pgthOﬂ

Database :@

“?Mll“”@ bata wWOUlo
w Storage
9

DAGSTER

Orchestration /
Workflow Automation

FIGURE 1-1 MINIMUM DATA LAKE TECHNOLOGY STACK USED IN DATA4ANOW

While FOSS forms the backbone of the architecture, proprietary solutions developed by private
vendors are not excluded when they align with specific needs. For example, Active Directory (AD),
a widely used proprietary identity and access management system, reinforces security for many
NSOs. They can choose to use existing AD with these tools and reduce the burden of having to
manage separate identity and access management systems. FOSS and proprietary solutions should

DATA >~ Collaborative
SINOW c on Administrative Data

be seen as complementary, with their advantages and limitations carefully evaluated based on the
unique context and operational requirements of each NSO.

Brief overview of these tools and additional FOSS alternatives can be found in ‘Few components of

open technology stack for data’. ‘Basic requirements for minimum data lake technology stack used

in Data4Now’ outlines the platform (hardware, software) and skill-set requirements for deploying
and managing the selected minimum data lake technology stack. Finally, ‘Technical implementation

guide for minimum data lake technology stack used in Data4dNow’ provides hands-on guidance for

deployment of the proposed architecture tested by Data4Now team.

Before moving to the next section, it is important to highlight that effective modernization extends
beyond technical infrastructure to encompass organizational workflows, stakeholder requirements,
and interdepartmental collaboration. Aligning the proposed architecture with an organization’s
overall IT strategy enhances data management, capacity building, governance, and long-term
scalability. This is also highlighted in the figure below.

@ Technical Requirements

? Organizational Workflows

Stakeholder Needs
Modern IT R A
Architecture
Dimensions

?é] Data Management

o)
g‘a Capacity Building

FIGURE 1-2 UNVEILING MODERN IT ARCHITECTURE DIMENSIONS

Implementing mature and stable technologies with a focus on automation, reliability, and efficient
scaling is important and needs to be planned from the beginning. Continuous enhancement,
monitoring, and testing of these tools to integrate into the overall solution is essential to ensure
smooth transitions as we modernize our infrastructure.

DATA ® ° Collaborative
§|NQW c on Administrative Data

1.2 Goals and objectives

The primary goal of this document is to support the modernization of IT architecture at NSO to
incorporate new data sources by providing information on the design and implementation of
modular, scalable, and resilient data lake architecture. This IT architecture is designed to integrate
innovative data sources supporting both structured and unstructured data formats while improving
data processing efficiency by utilizing storage formats that store compressed data. It also serves as
a data innovation lab to support implementing advanced data science methodologies, enabling the
production of timely, disaggregated, and high-quality data for sustainable development. Grounded
in the principles of sustainability, inclusivity, and innovation, the proposed architecture prioritizes
the use of FOSS while remaining open to complementary proprietary tools where necessary,
ensuring efficient processing, management, and dissemination of diverse data sources.

Specific Objectives:

1. Consolidate foundational knowledge: The document provides an overview of tools and
technologies in the data lifecycle, from data ingestion and storage to processing and
dissemination with a focus on using innovative data sources. It highlights the benefits and
limitations of few of these tools, offering practical insights to guide informed decision-
making.

2. Build institutional capacity: Emphasis is placed on fostering the skills and self-reliance of in-
house IT teams to manage and evolve these systems, ensuring long-term sustainability and
resilience. This document highlights hardware, software and skillset requirements needed
to deploy, manage, and use the modern IT architecture. It also documents the deployment
process of the minimum data lake technology stack so the IT team can follow the process
and evolve as needed.

3. Aligning with strategic goals: Document focuses on aligning IT systems with national
strategies, enhancing workflows, fostering interdepartmental collaboration, and addressing
global and national development priorities.

4. Incorporate lessons and good practices: Practical examples drawn from initiatives such as
Data4Now and DA-13 are provided to support scalable and context-specific
implementations for NSO, aligning with global efforts to promote innovation, efficiency, and
collaboration.

1.3 Guiding principles for the modernization of IT architecture

The following DatadNow principles guide IT modernization:

1. Sustainability: Leverage free and open-source technologies supported by active
communities for long-term viability and adaptability while reducing reliance on proprietary
solutions. Train IT staff on managing and using the deployed tools.

2. Holistic perspective: Adopt a comprehensive approach to IT modernization that promotes
innovation, integrating data workflows, tools, and processes to create a cohesive and
efficient statistical system.

DATA ® ® Collaborative
§|N3W c on Administrative Data

3. Production-ready solutions: Implement robust and reliable open-source tools that are
capable of handling real-world workloads, ensuring scalability and operational efficiency.

4. Privacy and confidentiality: Ensure compliance with data protection standards to safeguard
sensitive information, enabling secure data analysis and sharing.

Guiding Principles

o Openness and
o inclusi 5
Holistic

perspective Priorities are
. always
m;:::;\ g&lllil-lafr-‘l;ﬁr" identified by Knowledge sharing
the pproac and transparency
Data quality countries Commitment to

provide resources

@) Prartnership

protection of privacy 56 c
and confidentiality U;;-‘-:;"g:é:-

® 12]

Sustainability J‘;JII_IIE I\:-"}IE.;’JEI:I
creation

FIGURE 1-3 DATA FOR NOW GUIDING PRINCIPLE

1.4 Reference architecture for data innovation

The rapid evolution of IT architecture, driven by innovative data sources, technological
advancements, and changing organizational requirements, highlights the importance of establishing
a reference architecture for data innovation. Such architecture provides a strategic framework for
designing workflows that encompass data collection, storage, processing, analysis, and
dissemination. It promotes flexibility and scalability to address emerging challenges, such as
handling different formats of data along with the shift from traditional Extract, Transform, Load
(ETL) processes to more adaptive Extract, Load, Transform (ELT) models.!

The updated unified data infrastructure diagram (shown below) provides an overview of
organizational data flows and incorporates practical recommendations on tools and platforms
utilized by leading data organizations. While not all elements may be implemented at NSOs, the
framework offers an adaptable foundation for the modernization efforts, particularly within
initiatives like Data4Now. As it progresses, it could then incorporate Artificial Intelligence (Al) and
Machine Learning (ML) capabilities.

" This perspective draws on insights from "Emerging Architectures for Modern Data Infrastructure," authored by
Matt Bornstein, Martin Casado, and Jennifer Li at Andreessen Horowitz. The authors provide an overview of trends
and best practices shaping modern data infrastructure.

DATA
(INDW

® ® Collaborative

on Administrative Data

Unified Data Infrastructure (2.0)

Ingestion Query and Analysis and
Sources and Transport Storage Processing Transformation Output
— L —_—
OLTP Databases Data Replication Data Warehouse Dashboards
via CDC (Fivetran, Stitch, Matillion, Airbyte) (Snowflake, BigQuery, Redshift) (Looker, Superset, Tableau, Sigma,
. . b ALESERIE Thoughtspot)
Metrics Layer
ERP —_——— e (LookML, Transform, — Embedded Analytics
(Oracle, Salesforce, NetSuite,... { 1 Supergrain. dbt) (sisense, Looker, cube.js)
| Lakehouse |
| |
Operational Apps | Data Lake Spark Platform | Data Modeling Augmen;ed Aﬂna{}ytlcs
(salesforce, Hubspot, Zendesk) e— (Databricks, Amazon EMR) I (dbt, LookML) ‘ n:iu:‘?: [S)isx:j; -
— (A‘-,:]:,, oy an ff:; _i_> Delta, Tabular Iceberg, Hudi : 4 | '
Elementl/ Dagster) g SQL Query Engine
Event Collectors - Pt | il Data Workspace
Workflow Manager P
I Parquet, ORC, Avro » Presto/ Tring, Hive,
(segment, Snowplow) Grarens v St B Ry, —— (aiflows Astronomer, Prefect, ™ (Made, Hex, Deepnote)
| g | Elementl/ Dagster) S
| |
o~ S3, GCS, ABS, HDFS .
Logs I DS/ML Platforms | T DS’;ML‘ Tuol\nkg
| (Pandas, Dask, Anyscale/ Ray, PyTorch,..) | | (Catabncks Sagomake)
| | DataRobot,...)
h ~
| l
Event Streaming -rT--———f"""|—"—"—"—""—"~—""~""~""["~"—"——- -
3rd Part)!' APIs ., (Confluenty Kalfka, r App Fr‘ameworks
(e.g., Stripe) AWS Kinsis, Pulsar, Upsalver) - (streamlit, Plotly Dash)
t > Real-time Analytics Database
File and Object Storage (Imply/Druid, ClickHouse, Pinot, Rockset) Custom Applications
; ¥
+— .
Stream Processing
(Zs::lfr;:niﬂ_m ‘) »> (Databricks, Confluent, Flink,

t

Upsolver, Materialize)

Data Observability

Data Governance
{Collibra)

Data Discovery
(Amundsen, DataHub, Atlan, Alation)

Entitlements & Security

Monte Carlo, Bigeye, Superconductive; ;
(‘geye, Sup d (Privacera, Immuta)

Great Expectations, AccelData)

FIGURE 1-4 UNIFIED DATA INFRASTRUCTURE ARCHITECTURE 2.0 - ANDREESSEN HOROWITZ

https://a16z.com/emerging-architectures-for-modern-data-infrastructure/

DATA > Collaborative
SINOW c on Administrative Data

Core Architecture: The Data Lake

To support NSO, a simplified reference data lake architecture has been proposed below in ‘Figure
1-5 Simplified reference data lake Architecture’, comprising logical layers and technical landscape
focused on scalability and user-centric design. This framework prioritizes the integration of FOSS
while recognizing the importance of strengthening existing capabilities with proprietary tools where
necessary. While this architecture remains under development, specific attention is being directed

toward security and access control to ensure operational readiness.

Data Lake Technology Landscape

TmnSfonTlationlAnaIySis

Census, Survey,
Admin Data,
Satellite, Mobile,
Social media

Database
{Postgres, Oracle, MySQL)

Data Virtualization/ Data Modeling &

SQL Query Engine _ Analysis
(Trino, Presto, Hive, Dremio) (Jupiter "ofegznk. Python, R,

Dashboards & Report

(superset , tableau, notebook, looker,
qgis)

Website
(PxWeb, web, mobile,)
Spatial Analytics
(qgis, arcgis, natebook)
Custom app

Data Collection
(NiFi, Airbyte, Kettle, Java,

R Data Storage

formats

(parguet, ORC,)

API
(Open data, gov, banks, MPD...)

Data Storage

Platform
53, Hdfs, GCS’

Orchestration / Workflow Automation
(Airflow, Dagster, Elementl, Perfect)

Governance, Entitlements, and security

FIGURE 1-5 SIMPLIFIED REFERENCE DATA LAKE ARCHITECTURE

“Figure 1-1 Minimum data lake technology stack used in Data4Now” serves as an example with
selected tools to design this data lake architecture while exploring customizations based on
organizations requirements. We will explore in following chapters some of the requirements to
deploy these tools including the importance of a strong IT team and practical deployment steps.

Minimum Data Lake Technology Landscape

Data sources Ingestion Storage Integration, Transformation &

Analysis
csv N ' 7 . -
Q trlno Open jupyter notebook
@ Data o~
- Virtualization
S & b Data .
a Collection a pgthOI'I

Database

’ U f?mn-uo QGIS
Data
W Storage
D.ﬁ?‘rzn Orchestration /

Workflow Automation

DATA ® ® Collaborative
§|N3W c on Administrative Data

This architecture (Figure 1.4-2) divides the data lifecycle into five interconnected stages:

1. Data source
A "data source" can refer both to the original point of data generation and to the system where the
data is subsequently stored or made available. In the statistical context, "data source" often refers
to the instrument or system used to generate data. These sources include traditional statistical
instruments like censuses and sample surveys, as well as administrative records, business registers,
and non-traditional sources such as mobile phone data, Earth observation (satellite data), social
media, e-commerce records, remote sensor data, etc. In this document, we will classify data
sources based on the format in which the data is accessed, such as database connections, data files
or API connections, and frequently refer to the specific formats in which the data is serialized (e.g.,
JSON, XML, CSV, DAT, Parquet, etc.).

2. Dataingestion
Data ingestion is the process of importing, acquiring, or transferring data from various data sources
into a system where it can be processed and analyzed. It involves connecting to diverse sources of
data discussed above using the format in which the data is accessed. This may involve using APls,
database connections, file uploads, or other methods and could use real time data using streaming
or schedule data upload using batch. Additionally, the data may come in various formats like JSON,
CSV, Parquet, etc. Some popular tools for data ingestion include Apache NiFi, Airflow, Pentaho PDI,
etc. along with code options like java, python script, etc.

3. Data storage
Data storage is the process of storing collected data in a secure and organized manner to allow for
efficient retrieval, management, and future use. Data stored should be capable of managing large
volumes of structured and unstructured data. The choice of storage depends on the data format,
volume, and accessibility requirements. Options include relational databases (e.g., MySQL,
PostgreSQL), NoSQL databases (e.g., MongoDB, Cassandra), or file-based systems like Hadoop
Distributed File System (HDFS) or MinlO. Even in file-based systems, large datasets can be stored in
compressed row or column-oriented storage like Parquet, ORC, etc. and further virtualized using
tools like Hive, Trino, Presto, etc.

4. Data processing
Data processing refers to the transformation of raw data into meaningful and usable forms for
analysis, modeling, or reporting. It often involves cleaning, validating, anonymizing, linking,
aggregating, or transforming data collected from various sources. Processing pipelines vary
depending on whether the data is structured, semi-structured, or unstructured. Common steps
include deduplication, missing data handling, integration from multiple sources, and harmonization
into standardized formats. Some of the common tools used include Python libraries (pandas,
NumPy, etc.), R, STATA, SPSS, Apache Spark, QGIS, etc.

5. Data dissemination

10

DATA ® ® Collaborative
§|NQW c on Administrative Data

Data dissemination is the process of sharing processed data or statistical outputs with stakeholders,
end-users, or the public in a format that is interpretable, accessible, and actionable. Dissemination
ensures that the collected and processed data is available for decision-making, research, or public
use. This involves making datasets, dashboards, or reports available via platforms like websites,
APIs, interactive portals, or file distribution systems. Security and privacy considerations, such as
anonymizing sensitive data, are key to dissemination strategies. Apache superset, PowerBI, Looker
studio, Metabase, etc. are some of the popular dashboards and PxWeb, CKAN, GeoServer, etc. are
few among many of the dissemination tools.

Conclusion

Each phase of this reference architecture for data innovation is crucial to building a modern
statistical framework that ensures seamless data flow from sources to actionable insights or
dissemination. This approach enhances efficiency, adaptability, and relevance, supporting the
mandate of NSO to provide high-quality, timely, and reliable statistics for sustainable development.
In addition to this, there are components like data-discovery, observability, workflow manager,
Al/ML platform, etc. that should be integrated as the system becomes mature.

11

DATA ® ® Collaborative
§|NQW c on Administrative Data

2 Few components of open technology stack for data

2.1 Overview

The open technology stack for data comprises a suite of open-source tools and open-standard
technologies designed to support the innovative data lifecycle, from collection and processing to
dissemination and reuse. It facilitates organizations to modernize their data infrastructure by
enhancing tool integration, promoting interoperability, and reducing reliance on proprietary
solutions thereby mitigating vendor lock-in. The modular design of the stack fosters sustainability,
strengthens local capacity, and ensures long-term viability for NSO.

A modern open technology stack for data aligns closely with the principles of DatadNow, which
emphasize open standards, modular design, and better integration. This alignment makes open
technology stack for data as an ideal technical foundation for implementing efficient,
interoperable, and scalable data infrastructure tailored to the unique requirements of NSO.
However, building a robust and effective open technology stack for data presents significant
challenges, particularly given vast and fragmented landscape of tools and technologies with
overlapping functionalities. In the below ‘Figure 2-1 Overview of select tools discussed in different

components of the data value chain’, we have grouped and highlighted few of these FOSS tools.

Ingestion

¢ Apache NiFi

¢ Airbyte

¢ Pentaho PDI

¢ Python, R, Java

Dissemination

e Superset (Dashboard)
¢ Metabase (Dashnoard)
« CKAN (DMS)

*PxWeb (data publishing)

*GeoServer (geospatial)

Storage

*MinlO (platform)
*HDFS (platform)

e Parquet (format)

¢ ORC (format)

e Trino (Virtualization)
e Presto (Virtualization)

Orchestration

e Airflow
¢ Dagster

Processing

e Jupiter Notebook (Python, R)

e JupiterHub (platform)

e Spark (Framework)

e Dask (Framework)

¢ DuckDB (inmemory processing)
*QGIS (Geospatial)

Deployment

e Kubernetes k8s

e kubeadmin (deployment)
e Kubekey (deployment)

e Lens (Management)

e Rancher (Platform)

e Kubesphere (Platform)

FIGURE 2-1 OVERVIEW OF SELECT TOOLS DISCUSSED IN DIFFERENT COMPONENTS OF THE DATA VALUE CHAIN

In the following sections, we will examine few select components along with tools shown in the
above figure, categorized according to their function within the data value chain.

12

DATA ® ° Collaborative
§|NQW c on Administrative Data

2.2 Data ingestion/collection

Data ingestion is the process of importing, acquiring, or transferring data from various sources. This
data is then processed and analyzed within a system. It involves connecting to diverse sources of
data such as surveys, administrative records, or non-traditional data sources like mobile phone or
satellite data and retrieving the data. Few considerations for this layer, along with relevant tools,
are discussed below.

2.2.1 Few considerations:

The diagram below highlights few considerations for data collection.

Data Sources

Ensuring data Identifying where
integrity and data will be
correctness. collected from.

Data Security

Protecting data Determining the

during collection types of data to
and storage. collect.
Frequency
Establishing how Defining how data
often data is will be shared.
received.

FIGURE 2-2 DATA INGESTION CONSIDERATIONS

1. Data Sources: Identifying the sources from which the data will be collected is crucial. Some
examples of data sources are census, surveys, admin-data, citizen data, news and social
media, satellite, mobile phone data, e-commerce data, and more. Establishing
Memorandums of Understanding (MOUs) with data providers may be necessary to ensure
legal and ethical data sharing.

2. Data Format: Determining the types of data to collect is important, such as structured data
(e.g., tables, spreadsheets) or unstructured data (e.g., text, images, audio, video). For large
datasets, efficient formats like Parquet and OCR should be considered. For statistical data,

13

DATA ® ° Collaborative
§|NQW o on Administrative Data

SDMX (Statistical Data and Metadata eXchange) format is recommended for data exchange
along with DDI (the Data Documentation Initiative) for capturing metadata.

3. Connection Type: Defining how data will be shared is equally important. Common
connection types include sFTP, database connections, data APIs, application APls, web
upload, email, and HTTP (web scraping).

4. Frequency: Determining how often data is collected, is important. Data may be received
daily, weekly, monthly, quarterly, annually, or as a one-time process.

a. Batch Processing: Data is collected, processed, and delivered in predefined batches
at scheduled intervals. This is suitable for handling large volumes of data and
performing resource-intensive operations.

b. Real-time Streaming: Data is continuously ingested and processed as it arrives. This
is vital for applications requiring real-time analytics or monitoring, such as disaster
response.

5. Data Security: Implementing security measures is vital to protect the data during collection,
transmission, and storage. It includes encryption protocols (e.g., SSL/TLS with HTTPS, SFTP,
SSH) encrypted tunnels (e.g. VPNs) and an identity verification system to prevent
unauthorized access.

6. Data Validation: Establishing validation processes to ensure data integrity and accuracy is
crucial to avoid errors and inaccuracies.

2.2.2 Dataingestion tools

In the context of data ingestion, low-code tools and traditional coding languages play important
roles in simplifying the process of moving and processing data from various sources into a data
pipeline.

Low-code tools: These platforms enable users to create data pipelines and workflows with minimal
manual coding. They provide visual interfaces and pre-built components, making it easier to design,
configure, and automate processes. Low-code tools are particularly useful for users without
extensive programming knowledge but those who need to manage data workflows effectively.
Examples of FOSS tools used by various NSO for data ingestion include:

1. Apache NiFi: A user-friendly tool for real-time and batch data flows, offering flexible
connectors and transformations.

2. Airbyte: A modern ELT platform with an extensive library of prebuilt connectors.

3. Pentaho PDI: A data integration tool that enables ETL from a variety of sources.

A quick comparison of few of these tools is shown in the table below:

Feature Apache NiFi Pentaho PDI Airbyte
License Open Source (Apache) | Commercial (Enterprise)/ | Open Source (MIT)
Open Source (Community)
Ul Experience Web-based flow Desktop application with Web-based
designer with drag and | drag and drop configuration Ul
drop

14

https://sdmx.org/about-sdmx/welcome/
https://nifi.apache.org/
https://airbyte.com/

DATA ® ° Collaborative
§|NQW o on Administrative Data

Feature Apache NiFi Pentaho PDI Airbyte
Learning Curve Moderate to steep Moderate Low
Connectors/Sources 300+ processors 100+ 300+ connectors
Transformation Moderate Excellent Limited (relies on
Capabilities destination)
Scalability Highly scalable Good Good
Scheduling Built-in Built-in Built-in
Cloud Support Yes Yes Yes (cloud-native)
Community Activity Very active Moderate Very active

Custom code: Writing custom code provides greater flexibility and customization for data ingestion
processes. While it requires technical expertise, it allows for tailored solutions to meet specific
requirements. Common languages used for data ingestion include:

1. Custom Python/R Scripts: Flexible and widely used for bespoke data process.
2. Custom Java/C#/etc.: Suitable for building custom data ingestion pipelines with high
performance and scalability.

Additionally, a use case for Apache NiFi will be published separately to demonstrate how countries
can implement this tool effectively.

2.3 Data storage and management

Data storage refers to the system and processes used to store data collected from various sources
or generated through analytical processes, either in raw or aggregated formats. It involves the
organization, management, and retrieval of data assets to support various applications and
services. Selecting an appropriate storage mechanism is an important aspect of modern IT
architecture design and operation. Mature data architecture includes data-warehouses alongside
supporting data lake or data lake house architecture.

Data warehouses: Data warehouses store well-organized, transformed data with predefined
schemas, ensuring quality and consistency through ETL processes. They use star or snowflake
schemas, organizing data into dimensions and fact tables for efficient querying and analysis.

Data lakes: Data lakes store diverse, raw data without strict structuring, providing flexibility for
various data types. Key characteristics include:

e As-is data ingestion promoting schema-on-read.

e Support for both structured, semi-structured, and unstructured data
¢ Scalability and adaptability for evolving analytical needs.

o Capability for exploratory analysis and advanced analytics.

Given the focus on innovative use of new and existing data, this section emphasizes data lake
architecture. However, the choice of architecture depends on the specific needs of NSO. The

15

DATA ® ° Collaborative
§|NQW o on Administrative Data

modular design allows for flexibility and scalability. Proper data storage and access management
practices are essential to ensure data security, privacy, and efficient processing. Below are few
considerations, tools and strategies for data lake storage.

2.3.1 Few considerations in data lake storage:

1. Storage platform: Modern data lake typically uses traditional distributed file systems (e.g.,
Hadoop HDFS) or object storage systems (MinlO, Amazon S3, Azure Blob Storage, Google
Cloud Storage, etc.). These platforms provide scalable, durable, and cost-effective storage
for large volumes of data.

2. Storage format: Data can be stored in efficient formats like Parquet, AVRO, ORC, etc. which
offer row- or column-oriented storage with compression and encryption. These formats
save storage space and reduce access/load time compared to traditional data formats like
CSV, JSON, SPSS, etc.

3. Data access management: Data lake can implement Role-Base Access Control (RBAC) or
Policy-Based Access Control (PBAC) to manage access at different level. Fine-grained control
can also be applied at the object level.

4. Data organization strategy: Data in the data lake can be organized in buckets using
medallion architecture like [e.g., Raw, Anonymized/Bronze, Staged/Silver, Aggregate/Gold,
etc.] and partitioned by meaningful attributes (e.g. year, location, or category, etc.) to
improve query performance and usability.

2.3.2 Data storage platforms:

Modern data storage technologies for data lakes include a variety of tools and platforms that
leverage advancements in cloud computing, distributed computing, and big data processing. These
technologies aim to provide scalable, efficient, and cost-effective solutions for storing and
managing data within a data lake. Here are some of the prominent data lake platforms that support
on-premises deployment:

Distributed File System in data lake: Systems like Hadoop Distributed File System (HDFS) store and

manage vast amounts of data across interconnected nodes. They are well-suited for batch-oriented
processing and analytics, offering high throughput and fault tolerance. Many early adopters of big
data technology use Hadoop ecosystems including DANE-Colombia. They could be costly to manage
in terms of resource utilization.

Object storage: Platforms like MinlO, Amazon S3, and Azure Blob Storage store data as objects
within containers, each with a unique identifier and metadata. Object storage is ideal for
unstructured data and offers scalability, durability, and cost-effectiveness. Many new
implementations include Object storage solution.

A quick comparison of few of these platforms is shown in the table below:

Feature MinlO Hadoop HDFS
Architecture Object storage system Distributed file system

16

https://hadoop.apache.org/
https://min.io/

DATA
(INDW

C

Collaborative

on Administrative Data

Feature MinlO Hadoop HDFS

API Compatibility | Amazon S3 compatible HDFS API

Data Structure Object-based Block-based

Deployment Lightweight, container-friendly Heavyweight, cluster-oriented

Scalability Horizontal, containerized Horizontal, requires name node
planning

Performance High throughput, optimized for Optimized for large files, slower for

small/large files

small files

Fault Tolerance

Erasure coding, distributed design

Replication-based

Cloud-Readiness

Cloud-native design

Originally designed for on-premises

Complexity Simple setup and maintenance Complex setup and operational
overhead

Ecosystem Works with S3-compatible tools Native integration with Hadoop

Integration ecosystem

Use Cases Modern cloud applications, Traditional big data processing
microservices (Hadoop ecosystem)

Security IAM, encryption, RBAC Kerberos, ACLs

Consistency Model | Strong consistency Eventually consistent

License Open source (AGPLv3) Open source (Apache)

In the annex section “Data ingestion tools” you can see an example of python script that ingest data

from an ftp server to and MinlO.

233

Data storage formats:

Modern data lake architectures support various storage formats to accommodate diverse data

types and analytical needs. Some common formats include:

1. Parquet: A columnar storage format optimized for analytics offering efficient compression
and encoding. Many countries have seen file size reduction of almost 90% when using
Parquet with Snappy compression. See Annex ‘Parquet’

2. ORC (Optimized Row Columnar): A columnar storage format designed for high-performance
analytics with features like predicate pushdown and lightweight compression.

3. Avro: A compact and efficient binary format supporting schema evolution and rich data
types. Ideal for data serialization and exchange.

4. JSON (JavaScript Object Notation): A human-readable format for semi-structured and
unstructured data.

5. CSV (Comma Separated Values): A simple, text-based format widely used for tabular data.

While less efficient than columnar formats for analytics, CSV remains versatile and easy to
work with.

A quick comparison of few of these formats is shown in the table below:

17

DATA $ ° Collaborative
§|N’W c on Administrative Data
Feature Parquet ORC Avro CSsv
Type Columnar Columnar Row-based Row-based
Development | Apache (originally Apache Apache N/A (standard
Cloudera/Twitter) (originally format)
Hortonworks)
Compression Excellent (built-in) Excellent (built- | Good Poor (requires
in) external
compression)
Schema Self-describing Self-describing Self-describing | No schema
Support
Schema Limited Limited Excellent N/A
Evolution
Query Excellent for Excellent for Good for Poor for large
Performance analytical queries analytical record datasets
queries processing
Write Moderate Moderate Fast Very fast
Performance
Ecosystem Hadoop, Spark, Hadoop, Hive, Hadoop, Kafka, | Universal
Support Presto, Athena, Spark, Presto Spark
Snowflake
File Size Small (highly Smallest (highly | Medium Large
compressed) optimized) (uncompressed)
Random Good Good Limited Poor
Access
Best For Analytics, data Hive/ORC Data Simple data
warehousing optimized serialization, exchange, small
analytics streaming datasets
Storage Very high Very high High Low
Efficiency
Processing Medium Medium Low Very low
Overhead

2.3.4 Data organization strategy

Effective data organization in a data lake is essential to ensure data discoverability, accessibility,

and usability for various data consumers. Here are some good practices for data organization on a

data lake:

1. Hierarchical structure: Organize data using a hierarchical folder structure based on

categories, domains, or data sources, etc. partition data based on attributes like date,

location, or type to improve query performance.

2. Data catalog (Metadata): Implement a data catalog to serves as a central repository for

metadata, data definitions, and data lineage.

3. Data versioning and lifecycle management: Track changes to datasets and manage

retention policies using tools like MinlO or Apache Atlas.

18

DATA
(INDW

C

Collaborative

on Administrative Data

4. Logical data model: Define a logical data model to guide data organization and
categorization. Consider frameworks like Linked Open Data (LOD) or SDMX for

interoperability.

DATA

snow Data Organization

o

E Raw:
Think of the raw bucket as a
reservoir that stores data in its
natural and original state. It's
unfiltered and unpurified. You
might store the data in its original
format, such as JSON or CSV. Or it
might be cost effective to store
the file contents as a column in a
compressed file format, like Avro,
Parquet, or Databricks Delta Lake.

This raw data is immutable. Keep
your raw data locked down, and if
you give permissions to any
consumers, automated or human,
ensure that they're read-only. You
can organize this layer by using one
folder per source system. Give
each ingestion process write
access to only its associated folder.

EAnon!mized:

Think of the Anonymized bucket
as a place to store the
transformed data in such a way
that it cannot be easily linked
back to an individual, ensuring
privacy and confidentiality. This
is often done to protect
sensitive information while stil
allowing for analysis and
research.

High level user identified in the
organization can performed
anonymization tasks.

Staging:

Data available in this bucket is
ready for actual methodological
implementation from statistical
perspective to produce indicators.
Data available in this bucket has
gone through data quality
assessment and frameworks.

Data is available in merged,
partitioned tables that are
optimized for analytics
consumption.

[—
Aggregate/Gold:

Your Aggregate level or indicator
level data is available in this
bucket. It's optimized for
dissemination. The Aggregate
layer could store indicator data,
data models, and link it to data-
warehouse and marts if needed.

Data can be served to the
consumers as-is, such as
notebooks, or Dashboard
applications or event open data
platforms

Data assets in this zone are
typically highly governed and well
documented. Assign permissions
by department or by function and
organize permissions by consumer
group or data mart.

FIGURE 2-3 SAMPLE DATA BUCKETS TO ORGANIZE DATA

While implementing in various NSO under Data4Now initiative, below suggested folders/buckets
are created enhancing the medallion architecture:

1. Raw: Contains unprocessed data from surveys, administrative records, and external sources.
2. Anonymized: Contains data anonymization using privacy enhancement technologies (PET).
3. Staging: Holds cleaned, validated, and standardized data.
4. Aggregate/Gold: Contains finalized statistical reports, indicators, and insights.
5. Archive: Stores historical data for trend analysis and research.

2.3.5 Data access management

Effective data access management safeguards sensitive data, prevents unauthorized access, and
ensures compliance with data protection regulations. Key practices include:

1. Policy-Based Access Control (PBAC): Assign permissions based on user roles and
responsibilities.

2. Least Privilege Principle: Grant users the minimum access required for their tasks.
3. Data Classification: Classify data by sensitivity and apply appropriate access controls.

These are just few points in data access management. NSO may need to define more custom access
management strategy based on their need.

19

DATA ® ° Collaborative
§|NQW c on Administrative Data

2.4 Data processing and analytics

Data processing involves cleaning, modeling, or linking datasets to prepare them for analysis. This
process uses standard or innovative methodologies to produce meaningful statistics and indicators.
The results are then stored or published in reports or dashboards. This is where business logic is
implemented along with data quality rules. Data processing tools are hence one of the most
integral parts of IT architecture from a statistical perspective. It can play a crucial role in facilitating
collaboration among different teams within data architecture. Few considerations to make in this
layer along with tools are discussed in below sections.

2.4.1 Few considerations:

1. Flexible data access: Platforms that can easily integrate with existing architecture and
provide directly access data are essential. This allows statisticians, data engineers, and data
scientists to work with the same datasets, eliminates data silos and ensures consistency in
data usage.

2. Reproducibility: the ability to reproduce analyses and experiments easily by rerunning
processes without external interference is critical. This is crucial for validation of results and
the accuracy of analysis over time.

3. Interactive environment: An interactive environment where users can write and execute
code, visualize data, and create explanatory narratives all in one place is equally important.
Such environment fosters collaboration, enabling teams to share insights, code, and
documentation effectively.

4. Collaboration tool: Platforms that allow teams to create notebooks containing code
snippets, scripts, and data analysis procedures promote transparency and collaboration.
Statisticians, data engineers, and data scientists can share their work, enabling team
members to understand and contribute to each other’s analyses.

5. Visualization and Documentation: Integrating code execution with rich visualizations and
text enables teams to present their findings comprehensively. Statisticians can explain
methodologies, data engineers can document transformations, and data scientists can
highlight model results within a single document.

6. Extension Capabilities: Support to various programming languages and libraries like Python,
R, etc. makes it adaptable to different team members' expertise and needs.

Providing a common platform to perform data modeling and analysis brings various teams together
while providing security, consistency and efficiency.

2.4.2 Data processing tools

Several tools are widely used for data processing and analytics, each offering unique capabilities to
support statistical workflows:

1. JupyterHub/JupyterLab: Enables collaborative, notebook-based exploration and analysis.
2. Apache Spark: Handles large-scale data processing with APIs for Python, Java, and Scala,
making it suitable for distributed computing.

20

DATA ® ° Collaborative
§|NQW o on Administrative Data

3. Dask: Facilitates scalable computation for Python-based workflows, particularly for parallel
processing.

4. SQL Engines (e.g., Trino): Provide high-performance querying for both structured and semi-
structured datasets

5. QGIS: A geographic information system (GIS) tool that allows users to view, edit, analyze, and
publish spatial data.

Advantages, disadvantages, and use cases for some of these tools are further detailed in Annex
Section 5.7 “Data processing tools”.

2.5 Data visualization and dissemination

Data visualization involves representing data in graphical or visual formats, such as charts, graphs,
dashboards, or interactive maps. These tools help users explore patterns, trends, and insights
effectively. Visualization helps communicate complex data intuitively and can drive decision-making
in organizations.

Data Dissemination involves making processed and analyzed data accessible to the intended
audience through various means like APls, data portals, downloadable datasets, or reports.
Effective dissemination ensures data is accessible, reusable, and easy to understand for target
users, such as analysts, policymakers, or the public.

2.5.1 Few considerations from a data lake Perspective:

o Integration: Visualization and dissemination tools should be integrated seamlessly with the
data lake to fetch real-time or batch-processed data. Technologies like APIs or connectors
facilitate this.

o Scalability: Systems should be designed to handle large volumes of data flowing in from the
data lake, accommodating concurrent queries or visualizations.

Accessibility: Dashboards and visualizations should be intuitive and user-friendly.
Data Governance: Appropriate access control, anonymization, and security measures are
important factors that should be in place when sharing or visualizing data.

o Formats and Standards: Disseminated data should comply with open standards (e.g., JSON,
CSV, XML, SDMX) to enable interoperability and reuse.

o User-Centric Design: Tailor visualization tools and dissemination methods to meet diverse
user needs, offering both high-level summaries and granular data.

2.5.2 Data visualization tools

Apache Superset: A modern, open-source data exploration and visualization platform. It provides
an intuitive interface for building dashboards and exploring data from various sources, including
relational databases and data lakes. It supports a wide range of data connectors and is designed to
make data exploration and visualization accessible to users of all skill levels.

21

DATA
(INDW

C

Metabase: A user-friendly analytics and dashboard creation platform that simplifies data

exploration and visualization. It is designed to be accessible to non-technical users while offering

advanced features for data analysts.

A quick comparison of few of these platforms is shown in the table below:

Collaborative

on Administrative Data

Feature Apache Superset Metabase

Primary Focus Enterprise-grade data exploration User-friendly analytics and
and visualization dashboarding

License Open Source (Apache) Open Source (AGPL) with

commercial options

Target Users

Data analysts, scientists, engineers

Business users, analysts (less
technical focus)

Learning Curve

Moderate to steep

Low (designed for ease of use)

SQL Knowledge Yes (for advanced features) Optional (has SQL and no-code

Required options)

Visualization Extensive (100+ chart types) Good (fewer options but covers
Options essentials)

Data Source 40+ databases and SQL engines 20+ databases and SQL engines
Connectors

Dashboarding Advanced with complex layouts Simplified but effective

Data Exploration

Excellent (core strength)

Good

Self-service Analytics | Moderate Excellent (core strength)

Embedding Supported Supported (premium feature in
paid plans)

Alerting Basic More comprehensive

Community Size Large, active Large, active

Best Use Case

Complex data analysis, extensive
visualization needs

Quick insights, business user
adoption

Enterprise Features

Through community plugins

Through paid plans

Governance &
Security

Strong

Basic in open source, stronger in
paid version

2.6 Security and Authorization

Entitlements and security are among the most important components of modern IT architecture.

They serve as cross cutting elements that support the overall governance of the infrastructure.

Properly implemented, they enable secure access to resources while safeguarding sensitive

information, ensuring data privacy, and maintaining compliance with relevant regulations.

22

DATA ® ° Collaborative
§|NQW o on Administrative Data

Balancing the need to make data available to more users with the requirements of security and
compliance can be challenging. However, several approaches can help achieve this balance. Few
considerations to make in this layer along with tools are discussed in below sections with focus on
access control.

2.6.1 Few considerations:

1. Authentication: Implement robust identity management systems (e.g., LDAP, OAuth2) to verify
the identity of users and services.

2. Authorization: Use role-based access control (RBAC) or policy-based access control (PBAC) to
define and enforce permissions effectively.

3. Encryption: Ensure data is encrypt both at rest (e.g., AES-256) and in transit (e.g., TLS/SSL).

4. Auditing and monitoring: Continuously monitor access logs and employ anomaly detection
mechanisms to identify potential security breaches.

5. Compliance: Adhere to relevant data protection regulations, such as General Data Protection
Regulation (GDPR), or applicable national frameworks.

Functionalities, Advantages, disadvantages, and use cases for security are further detailed in Annex
“Security and authorization”.

2.7 DevOps and Containerization

DevOps practices integrate software development and IT operations, enabling faster and more
reliable updates to systems and applications. Containerization encapsulates applications along with
their dependencies, ensuring consistent deployment across diverse environments. Below are some
tools and approaches to consider for implementing DevOps and containerization:

2.7.1 Kubernetes cluster

A Kubernetes cluster is a production-grade container orchestration platform that automates the
deployment, scaling, and management of containerized applications.

However, using a Kubernetes cluster is not mandatory for deploying data platforms or other
infrastructure components. The decision to adopt Kubernetes should be based on your
organization’s specific requirements, goals, and operational capacity. For a detailed breakdown of
the advantages and disadvantages of Kubernetes, tools for deployment and management, and
recommendations on when to use it, refer to Annex “Kubernetes cluster”.

2.7.2 Alternative Approaches

1 Virtual Machines or Bare Metal: For straightforward deployments, traditional virtual
machines(VMs) or bare metal servers may be sufficient and easy to manage.

2 Docker Swarm: Offers a simpler learning curve and native Docker integration but has
limited scalability compared to Kubernetes. It is best suited for smaller deployments.

23

DATA ® ° Collaborative
§|NQW c on Administrative Data

3 Managed Container Services: Consider using managed Kubernetes services (e.g., Amazon
EKS, Azure AKS, Google GKE) to reduce operational overhead while leveraging from
Kubernetes features.

4 Platform-as-a-Service (PaaS): For simpler applications, PaaS offerings like Heroku, AWS
Elastic Beanstalk, or Google App Engine can provide easier deployment and management
without needing to manage Kubernetes.

Kubernetes provides significant benefits for managing complex, containerized applications but
introduces added complexity and costs. The decision to use Kubernetes should be guided by your
specific use case, application complexity, and operational capacity. For simpler deployments or
organizations new to container orchestration, alternative approaches or managed services may
offer a more practical starting point. Conversely, for large-scale, complex applications requiring
advanced orchestration and automation, Kubernetes can provide powerful scalable solutions.

When evaluating options, consider the features, resource requirements, and complexity of each
approach to determine the best fits for your use case and deployment environment.

24

DATA ® ° Collaborative
§|NQW c on Administrative Data

3 Basic requirements for minimum data lake technology
stack used in Data4Now

3.1 Overview

Based on the platform where the technology stack is deployed, technology stack, volume/variety of
the data, new and innovative methodology implementation including machine learning algorithms
will influence the hardware and technical skill requirements for the infrastructure. We will briefly
discuss some of the requirements to deploy ‘Figure 1-1 Minimum data lake technology stack used
in Data4Now’ in this section.

3.2 Skills requirements

Proposed minimum data lake technology stack may require a diverse set of skills to deploy and
manage it. Few of them include:

e System Administration: Operating system administration (Linux) to set up and manage
server environments along with Package management, user management, security
configurations, and system monitoring.

e Infrastructure Management: Proficiency in managing and configuring server hardware,
networking, and storage devices. Knowledge of virtualization and containerization
technologies (e.g., Docker, Kubernetes). Ability to provision and manage virtual machines,
containers, and storage resources using Infrastructure as Code approach.

e Networking and Security: Knowledge of network architecture, including routing, load
balancing, and firewall configuration. Security best practices, including user access control,
encryption, and authentication mechanisms.

e Scripting and Automation: Proficiency in scripting languages like Python or Bash for
automating routine tasks.

e Version Control System: Version Control System GIT is a critical tool used to manage
changes to source code and other files in the repository.

e Problem Solving and Troubleshooting: Strong analytical and problem-solving skills to
diagnose issues and implement solutions. Effective troubleshooting and debugging of IT
problems.

e Data Management: Knowledge of setting up and managing databases or object storage
solutions like MinlO. Understanding data redundancy, durability, and backup strategies

The following table summarizes the key tools in the stack and the corresponding skills required to
deploy and manage them effectively:

25

. .
DATA $ ° Collaborative
[+ 4 « e .
9| N’W o on Administrative Data
Tool / | Primary Required Skills Skill Level Notes
Component | Function
Apache NiFi | Data ingestion | Data pipeline design Intermediate | Visual interface

& flow
orchestration

XML/JSON handling
Network protocols (FTP,
API)

NiFi Ul & processors

reduces coding
needs; scripting
optional

data analysis

Package management
(pip, conda)
JupyterLab extensions
User management

to Advanced

MinlO | Object storage | Linux system admin Intermediate | Similar to AWS S3;
S3 API familiarity integrates with
IAM policy configuration AD/LDAP
Storage architecture
JupyterHub | Collaborative Python/R scripting Intermediate | Useful for

statisticians and
data scientists

Helm deployment

Trino | Data SQL (advanced) Advanced Useful for
(PrestoSQL) | virtualization & | Schema design federated queries
querying Connector configuration across MinlO, DBs
Query optimization
Kubernetes | Container Cluster setup & Advanced Optional for small
orchestration management deployments;
Helm charts essential for
kubectl CLI scaling
Networking & volumes
Active | Identity & LDAP/AD integration Intermediate | Can be integrated
Directory (AD) | access RBAC/ABAC concepts with NiFi, MinlO,
management Security policies JupyterHub
Helm | Kubernetes Helm CLI Intermediate | Used for
package YAML templating deploying NiFi,
manager Chart customization JupyterHub, etc.
Git | Version control | Git CLI Basic to Essential for
Branching & merging Intermediate | managing
Repo management deployment
scripts
Linux | OS for all Shell scripting Intermediate | Base OS for all
(Ubuntu) | components Package management deployments
(apt)
System monitoring
Python /R | Data Data wrangling (pandas, Intermediate | Used within
processing dplyr) to Advanced | JupyterHub
Visualization notebooks
Statistical modeling
Longhorn | Persistent Kubernetes storage Intermediate | Optional but
storage for concepts recommended for
Kubernetes iSCSI/NFS setup resilience

26

DATA ® ° Collaborative
§|NQW c on Administrative Data

3.3 Platform

There are several factors to consider when deciding where the platform will be hosted. Few of
them include budget, security requirements, scalability needs, and technical expertise. Below we
try to highlight some of the options.

3.3.1 On-Premises Infrastructure

On-premises solutions are physically located at an organization’s site or in a hosting location. The
hardware, applications, and all the data are stored on servers or a private cloud where it is
protected with a firewall at that location. Although it provides full control over hardware, software,
and data, it has high initial investment cost along with recurring maintenance and disaster recovery
cost associated with it.

For reasons of security and data sovereignty, many NSOs have opted to host on-premises model,
while some have used cloud solution hosted within their territory as required by their law.

3.3.2 Cloud Infrastructure

When talking about cloud infrastructure, we will be focusing on laa$S (Infrastructure as a Service) to
implement IT Architecture. Having said that there also exists PaaS (Platform as a Service) and SaaS
(Software as a Service) within cloud services and should be considered as needed.

laaS is renting third-party hardware or virtualized computer resources including storage and
networking over the internet. We decide and manage the platform, operating system, technology
stack, development tools, and configuration of the system. Some of the popular laaS providers
include Azure, AWS, GCP, Digital-Ocean, Local telecom operator, etc.

This option eliminates large initial investment costs but could incur data transfer costs and
dependency on internet.

The choice between on-premises and cloud infrastructure is dependent upon several factors,
including financial resources, security considerations, scalability requirements, and the technical
capacity available within the organization. Many enterprises opt for a hybrid approach, integrating
on-premises and cloud-based solutions to leverage the advantages of both. However, managing a
hybrid infrastructure presents certain challenges, including the seamless integration of on-premises
and cloud components, ensuring robust security across both environments, and enhancing the
capacity of IT personnel to operate effectively within a diverse technological landscape.

3.4 Operating system

We have used Ubuntu 24.04 OS as a base to configure the minimum data lake technology stack
used in Data4Now setting.

27

DATA ® ° Collaborative
§|NQW c on Administrative Data

3.5 Hardware requirements

The hardware requirements for the infrastructure are dependent on the size and complexity of the
data, as well as the methodological requirements for generating various statistical outputs. These
may range from basic data processing to geospatial analysis and machine learning approaches,
while also considering the necessity for concurrent and parallel processing. It is essential to account
for the scalability and growth potential of the data platform when defining the hardware
infrastructure.

It should be noted that all recommendations regarding the number of processing cores refer to
logical cores rather than physical cores. Logical cores represent the number of CPU threads
recognized and utilized by the operating system.

Furthermore, hardware recommendations have been generalized to provide flexible guidance
across different deployment scenarios. A simplified reference table is provided below, which
presents indicative hardware resource allocations based on user concurrency per component. It is
important to emphasize that these recommendations serve as general guidelines and should be
tailored to the specific use case, considering performance evaluations and operational
requirements.

Hardware needs vary by user concurrency and data volume. Below are indicative specifications:

Concurrent CPU Cores (Per RAM (Per Disk (Per Network
Users Component as Component as Component as Bandwidth
applicable) applicable) applicable)
1 Minimum: 2 cores Minimum: 4 GB Minimum: 100 GB Gigabit
Ethernet
Recommended: 4 Recommended: 8 Recommended: 200
cores GB GB
5 Minimum: 4 cores Minimum: 8 GB Minimum: 150 GB Gigabit
Ethernet
Recommended: 8 Recommended: 16 Recommended: 400
cores GB GB
10 Minimum: 8 cores Minimum: 16 GB Minimum: 200 GB Gigabit
Ethernet
Recommended: 8+ Recommended: 32 Recommended: 800
cores GB GB
25 Minimum: 8+ cores Minimum: 32 GB Minimum: 300 GB 10 Gigabit
Ethernet

Recommended: 16
cores

Recommended: 64
GB

Recommended: 1.5
TB

28

DATA
(INDW

® ® Collaborative
C

on Administrative Data

Concurrent CPU Cores (Per RAM (Per Disk (Per Network
Users Component as Component as Component as Bandwidth
applicable) applicable) applicable)
50 Minimum: 16 cores Minimum: 64 GB Minimum: 500 GB 10 Gigabit
Ethernet
Recommended: 32 Recommended: 128 Recommended: 2.5
cores GB B
100 Minimum: 32 cores Minimum: 128 GB Minimum: 1 TB 10 Gigabit
Ethernet

Recommended: 64
cores

3.5.1 Apache NiFi

Recommended: 256
GB

Recommended: 4 TB

A minimum cluster configuration requires at least two nodes. (Additional reference: Apache NiFi

System Requirement)

Example minimum node

Node

Coordinator/Primary/Zookeeper

Additional considerations:

\>2 cores

Memory

\>4 GB

Storage

\> 10 GB

Memory: Tool’s performance benefits from having enough memory to manage data flows

efficiently. More memory allows for better caching and reduces the need to read from disk

frequently.

Disk Type: Using Solid State Drives (SSDs) can significantly improve performance due to faster

read/write speeds compared to traditional Hard Disk Drives (HDDs).

Number of Nodes: If you are planning to deploy in a clustered setup for high availability and load

balancing, the hardware requirements for each node in the cluster should meet or exceed the

recommended specifications.

Network: A fast and reliable network connection is essential, especially when dealing with data

flows that involve multiple sources and destinations.

Java Version: Many of these tools require Java to run. Make sure to use a compatible Java version
based on the tools version you are using.

29

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_requirements
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_requirements

DATA ® ® Collaborative
§|N3W c on Administrative Data

Monitoring and Optimization: As your data flows and usage patterns evolve, consider monitoring
your tool instance's resource utilization and performance. You might need to fine-tune settings and
resources based on the specific requirements of your data flows.

3.5.2 MinlO

MinlO is a software-defined high performance distributed object storage server. You can run MinlO
on consumer or enterprise-grade hardware and a variety of operating systems and architectures.

A cluster should ideally have a minimum of 4 nodes, to meet redundancy requirements, and a
maximum of 32 nodes. A 32-node cluster can store an average of 200 petabytes of data, or 6,250
terabytes per node.

For performance reasons, each node uses on average 1 to 4 GB RAM, 500 milli-core CPU and 400
MHz CPU. The Disk size depends on storage requirements. For big data applications, the main unit
for measuring the capacity of a data node is the terabyte. So, we can consider a minimum storage
capacity of at least 512 GB.

Node CPU Memory Storage

4 \>2 cores 4to0 16 GB \> 100 GB
8 \>4 cores 8to32GB \>8TB

16 \>8 cores 16 to 64 GB \>16 TB
32 \>16 cores 64 to 128 GB \>32TB

Addition references: https://min.io/product/reference-hardware

3.5.3 JupyterHub

To determine the size requirements of JupyterHub, consider these two factors:
1. number of active Notebook sessions that will run concurrently.
2. complexity of the operations being performed in Notebook

Recommended Memory = (Maximum Concurrent Users * Maximum Memory per User) + 128 MB
Recommended vCPUs = (Maximum Concurrent Users * Maximum CPU Usage per User) + 20%
Recommended Disk Size = (Total Users x Maximum Disk Usage per User) + 2 GB

Number of concurrent users CPU Memory Storage

10 6 cores 6 GB 12 GB

30

https://min.io/product/reference-hardware

DATA ® ® Collaborative
§|NQW c on Administrative Data

Number of concurrent users CPU Memory Storage
100 51 cores 60 GB 102 GB
500 501 cores 300 GB 5TB

Additional references: https://data.berkeley.edu/choosing-right-jupyterhub-infrastructure

3.6 Sample use-case to estimate Hardware requirement

As an example, we have below assumption that will help estimate hardware requirement to
establish a minimum viable data lake platform.

Assumptions:
= Data growth: 1 GB of new data monthly in compressed Parquet format.
= Data flow: Handles hundreds of MB of data monthly.
= User Load: 10 concurrent JupyterHub users working with hundreds of MB of data.

Based on the assumptions outlined above, the hardware requirements can be estimated as below:
= Storage:

= OS + Kubernetes: 50GB per node
= MinlO: Start with 500GB, expandable based on growth

= Additional space for logs and temporary files: 100GB
= Total: At least 650GB storage, recommend 1TB for growth

= CPU
= Base Kubernetes system: 2 cores
= NijFi: 2 cores (light processing load)
= MinlO: 2 cores
= JupyterHub: 4 cores (shared among 10 users)
= Total: 10 CPU cores (minimum)

= Memory:
= Base Kubernetes system: 4GB
= NiFi: 4GB
= MinlO: 4GB
= JupyterHub: 20GB (approximately 2GB per user)
= Total: 32GB RAM (minimum)

31

https://data.berkeley.edu/choosing-right-jupyterhub-infrastructure

DATA ® ® Collaborative
§|NQW c on Administrative Data

4 Cases Studies

To Be added in next release, but here are few NSO stories for reference.

Colombia
Senegal
Sierra Leone
Vietham
Tunisia
Maldives
Namibia

Nouhkwne

32

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-story-colombia
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-architecture-senegal
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/moderniz-stats-sl-data-infrastructure
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/modernizing-vietnam-national-statistical-databas

DATA ® ° Collaborative
§|NQW c on Administrative Data

5 Technical implementation guide for minimum data lake
technology stack used in DatadNow

5.1 Overview

Deploying any platform involves necessary planning of the infrastructure, technologies, team,
budget, and processes. It is a multifaceted process that involves careful planning, robust
infrastructure, and adherence to good practices. In the previous section, we briefly touched upon
some of the basic requirements for minimum data lake technology stack. This section will try to
navigate the workings of the platform deployment, offering insights into key concepts, architectural
considerations, deployment strategies, and maintenance practices. However, before jumping into
the actual technical implementation, it is important to plan the implementation strategies and
resource needs. A phased implementation approach could be a good way forward that allows NSOs
to gradually adopt components based on their priorities and capacity.

For the documentation of the deployment process of “Figure 1-1 Minimum data lake technology stack

used in Data4Now”, we will use Kubernetes cluster (k8s) as a scalable platform. However, it can also

be deployed in docker or standalone server as per the need of NSO. The selected open data stack
includes MinlO as storage tool, JupyterHub with Python and R notebooks enabled as analytics tool,
Apache NiFi as data ingestion tool, along with existing Active Directory integrated into each of the
tools as authentication and authorization tool. This configuration represents a minimum setup, and
additional tools or components can be integrated as per the need of the NSO.

There are two sections needed to deploy and manage the Kubernetes cluster. First is the
Administrators workstation that is used to manage the cluster. Second is the actual Datacenter or
servers where the Kubernetes cluster will be installed. Below diagram highlights these two
components.

Datal enter: Single,-r\ode kubernetes cluster

Server w1
(master + worker)

_—— = - -

Admin workstation
(kubeetl)

S

T

FIGURE 5-1 DEPLOYMENT OF DATA PLATFORM - SINGLE NODE CLUSTER

33

DATA ® ° Collaborative
§|NQW c on Administrative Data

The Kubernetes cluster can be further configured to be multi-node cluster to achieve high
availability, fault tolerance, and scalability of the applications deployed. Thus far, NSO of Tunisia
(INS) is the only agency where we have used multi-node cluster deployment. Meanwhile in other
NSOs like Viet Nam (GSO), Namibia (NSA), SierraLeone (Stats SL), have used single-node cluster
deployment.

Datalenter: Mulbi-node kubemetes cluster

Adwin workstation

-~
\
|
T
|
|
I
1
|
]
|
1
1
1
1
1
1
|
|
|
£

(kubect!
Server w.l Server w.2 Server w.n
v (worker) (worker) (worker))
. -
\ workers - zone
N /

FIGURE 5-2 DEPLOYMENT OF DATA PLATFORM - MULTI-NODE CLUSTER

The selection of the appropriate cluster architecture, whether single-node or multi-node, is
primarily contingent upon the available infrastructure capacity and the level of high availability
required for seamless access to the data lake. A thorough assessment of these factors is essential to
ensure sustainability, resilience, and operational efficiency of the deployed system.

To facilitate effective administration and management of the infrastructure, it is imperative that
both the administrator’s workstation and the designated server(s) be configured with the necessary
tools and software components. These include, but are not limited to :

¢ The installation of kubectl, Helm, Git, Lens, and the MinlO Client (mc) on the administrator’s
workstation to enable administrative tasks and system monitoring.

e The deployment of a Kubernetes cluster configured with persistent storage to ensure data
durability and system reliability.

The diagram below provides a comprehensive overview of the deployment of infrastructure,
illustrating the key components and their interconnections within the system. The base operating
system for the server/datacenter is Ubuntu.

34

DATA ® ° Collaborative
§|NQW o on Administrative Data

Dotocerter
(KT duster _ Persistant Storage) it b
v 7 Y \ G
| : : : : Con‘t;‘mg: RHe,g;s‘tnf'.
: Master . I : | ockeriu
| |
| I
\)) e
Ide,n‘t'uty Monager:

_/ Active D'.re,c:‘tory

- kubectl P
- hgrw\ / i
~ ?"-‘t < p Gy B
P AN e
. _ome Code repository:
Admin Workstotion Coc!&.op{}nc]alstatistk:s.or&

FIGURE 5-3 KUBERNETES INFRASTRUCTURE OVERVIEW

All deployed tools are open source, with images sourced from DockerHub. A connection with Active
Directory ensures a unified authentication mechanism for all users. The platform’s code is available
in the repository at code.officialstatistics.org, with a branch repository created for each country.

In addition to the Kubernetes cluster, an equally crucial tool is deployed on the servers: the
Persistent Storage System. This system facilitates the management of application data within the
Kubernetes cluster by providing mechanisms for backup and restoration of the data.

5.2 Checklist

To facilitate the deployment of the platform, a structured set of steps has been established. An
initial checklist, consisting of three (3) steps, was developed during deployments in NSOs of
Vietnam (GSO) and Namibia (NSA).

A more refined version of the checklist was developed following a mission in NSO of Tunisia (INS).
This version was updated based on insights gained from the deployment in NSO of Sierra Leone
(StatsSL). As a result, the checklist evolved from three (3) steps to nine (9) steps, incorporating
multiple sub-steps to enhance clarity and efficiency.

The complete list of steps and sub-steps included in the checklist is available as an Excel file, as
presented in Annexes ‘Minimum data lake technology stack for Data4Now deployment checklist’.

35

DATA ® ° Collaborative
§|NQW c on Administrative Data

5.3 Deployment

The deployment of the Kubernetes cluster shall be conducted sequentially following the steps
outlined in the checklist.

5.3.1 Prerequisites

This section outlines the essential prerequisites for deploying the minimum data lake infrastructure,
ensuring that all necessary configurations are in place. The servers are expected to be set up with
Ubuntu 24.04 or higher Operating System.

5.3.1.1 Resource Allocation and Component Distribution

Prior to the deployment of the platform, it is important to conduct a comprehensive assessment of
resource allocation and the distribution of components across various servers. This assessment
aims not only to determine the necessary server capacity but also to define the parameters for
configuring resources allocated to each component of the platform. For further information, please
refer to ‘Hardware requirements’

5.3.1.2 Collect Essential Information

The following preparatory information should be readily available:

1. Master Node Identification: The Internet Protocol (IP) address of the master node,
hereinafter referred to as {master_ip_address}.

2. Worker Node Addressing: The IP address of each worker node, required for deployment
documentation, and hereinafter referenced as {worker_ip_address}.

3. Node Naming Convention: Each node should be uniquely identified as “master,” “nodel,”
“node2,” etc., referenced in the deployment command line as {node_name}.

4. Code Repository Access: The hyperlink to the official code repository, referenced as
{code_repository._link}.

5.3.1.3 Workstation Setup

It is assumed that the workstation operates on the Windows operating system.

5.3.1.3.1 Install the Essential Tools: Git, Lens, Docker-Desktop

You can deploy the tools (Git, Lens, Docker-desktop) directly from their respective websites. To
facilitate deployment, we are using chocolate package manager to install the required tools using
the code below:

1. Open PowerShell as an administrator and execute the following commands:

C:\>Set-ExecutionPolicy Bypass -Scope Process -Force;
[System.Net.ServicePointManager|: :SecurityProtocol = °
[System.Net.ServicePointManager]: :SecurityProtocol -bor 3072;

iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/in
stall.ps1'))

36

DATA ® ° Collaborative
§|NQW c on Administrative Data

2. Reopen PowerShell as the current user and install the required tools:

Install Git

C:\>choco install git -y

Install Lens

C:\>choco install lens -y

Install Docker-Desktop (Optional)
C:\>choco install docker-desktop -y

5.3.1.3.2 Establishment of Working Directories

The directory structure of the workspace shall conform to the following scheme:

$HOME\datadnow\ # Main project workspace folder
| cli/ # CLI subfolder to store downloaded binaries
| |_helm.exe # Helm tool
| |_mc.exe # MinIO client tool
| |__kubectl.exe # Kubernetes client tool
|
| __code/ # Subfolder for code content

Execute the following commands to create the required directories:

Create main workspace directory
C:\>mkdir "$HOME\datadnow"

Create subdirectory for binary files
C:\>mkdir "$HOME\data4now\cli"

Create subdirectory for code content
C:\>mkdir "$HOME\data4now\code"

5.3.1.3.3 Configuration of Environment Variables

Execute the following PowerShell commands to configure the necessary environment variables:

37

DATA ® ° Collaborative
§|NQW c on Administrative Data

Define workspace path

C:\>[System.Environment]: :SetEnvironmentVariable('D4N_WORKSPACE', "$HOME\data4no
w", [System.EnvironmentVariableTarget]: :User)

Define CLI workspace path

C:\>[System.Environment]: :SetEnvironmentVariable('D4N_WORKSPACE CLI', "$HOME\dat
ad4now\cli", [System.EnvironmentVariableTarget]: :User)

Define code workspace path

C:\>[System.Environment]: :SetEnvironmentVariable('D4N_WORKSPACE CODE', "$HOME\da
tadnow\code", [System.EnvironmentVariableTarget]::User)

Assign master IP address

C:\>[System.Environment]: :SetEnvironmentVariable('D4N_MASTER IP_ADDRESS', "{mast
er_ip_address}", [System.EnvironmentVariableTarget]::User)

Assign repository Link

C:\>[System.Environment]: :SetEnvironmentVariable('D4N_REPOSITORY', "{code reposi
tory link}", [System.EnvironmentVariableTarget]: :User)

Update system PATH with CLI directory

C:\>$currentPath = [System.Environment]::GetEnvironmentVariable('Path', [System.
EnvironmentVariableTarget]: :User)

C:\>$newPath = "$currentPath;$Env:D4AN_WORKSPACE CLI"

C:\>[System.Environment]: :SetEnvironmentVariable('Path', $newPath, [System.Envir
onmentVariableTarget]: :User)

5.3.1.3.4 Downloading Essential Binaries and Cloning the Repository

Download Helm

C:\>Invoke-WebRequest -Uri "https://get.helm.sh/helm-v3.17.1-windows-amd64.zip"
-OutFile "$Env:D4N_WORKSPACE_CLI\helm.zip"

C:\>Add-Type -AssemblyName 'System.IO.Compression.FileSystem'

C:\>[System.IO.Compression.ZipFile]: :ExtractToDirectory("$Env:D4N_WORKSPACE CLI\
helm.zip", $Env:D4N_WORKSPACE CLI)

C:\>Move-Item -Path "$Env:D4N_WORKSPACE_CLI\windows-amd64\helm.exe" -Destination
$Env:DAN_WORKSPACE_CLI

C:\>Remove-Item -Path "$Env:DAN_WORKSPACE_CLI\helm.zip"

C:\>Remove-Item -Path "$Env:DAN_WORKSPACE_CLI\windows-amd64" -Recurse

Download Kubernetes client (kubectl)

C:\>$version = (Invoke-RestMethod -Uri https://dl.k8s.io/release/stable.txt).Tri
m()

C:\>$url = "https://dl.k8s.io/$version/bin/windows/amd64/kubectl.exe"
C:\>Invoke-WebRequest -Uri $url -OutFile "$Env:D4N_WORKSPACE_CLI\kubectl.exe"

Download MinIO client (mc)
C:\>Invoke-WebRequest -Uri "https://dl.min.io/client/mc/release/windows-amd64/m
c.exe" -OutFile "$Env:D4N_WORKSPACE CLI\mc.exe"

Clone the repository
C:\>git clone "$Env:DAN_REPOSITORY.git" $Env:D4AN_WORKSPACE_CODE

38

DATA ® ® Collaborative
§|N3W c on Administrative Data

5.3.1.4 Configuration on Master Node

Update package Lists

$sudo apt-get update -y

Install SSH service

$sudo apt-get install -y openssh-server

Enable root SSH login

$sudo echo "PermitRootLogin yes" | sudo tee -a /etc/ssh/sshd_config > /dev/null
Restart SSH service

$sudo systemctl restart ssh

Define repository environment variable

$echo 'D4AN_REPOSITORY="{code repository link}"' | sudo tee -a /etc/environment
Reboot the server

$sudo reboot

5.3.1.5 Configuration on Worker Node

Update package Lists

$sudo apt-get update -y

Install SSH service

$sudo apt-get install -y openssh-server

Enable root SSH login

$sudo echo "PermitRootlLogin yes" | sudo tee -a /etc/ssh/sshd_config > /dev/null
Restart SSH service

$sudo systemctl restart ssh

39

DATA ® ® Collaborative
§|N3W c on Administrative Data

5.3.2 Server Preparation (All Nodes)

This section outlines the necessary steps to prepare all nodes in the infrastructure for deployment.
The commands below ensure system updates, disable swap memory, and configure kernel
parameters essential for Kubernetes operations.

Update package lists to ensure the latest versions are available

$sudo apt-get update -y

Disable swap to ensure Kubernetes functions properly

$sudo swapoff -a

$sudo sed -i '/swap/d' /etc/fstab

Load required kernel modules for Kubernetes networking

$sudo cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf

overlay

br_netfilter

EOF

Activate the required modules immediately

$sudo modprobe overlay

$sudo modprobe br_netfilter

Configure system networking parameters for Kubernetes

$sudo cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-iptables 1 # Allow bridge traffic to be processed
by iptables
net.bridge.bridge-nf-call-ip6tables
ocessed

net.ipv4.ip_forward

EOF

Apply the new system configurations
$sudo sysctl --system

1 # Ensure IPv6 bridge traffic is also pr

1 # Enable IP forwarding for routing

5.3.3 Container Runtime Installation

This section details the installation and configuration of the container runtime, which is a
fundamental requirement for Kubernetes nodes. The following steps ensure a reliable and efficient
installation of Docker and cri-dockerd.

40

DATA ® ® Collaborative
§|N3W c on Administrative Data

Install prerequisite packages for Docker

$sudo apt install -y curl gnupg2 software-properties-common

Add the official Docker GPG Rey to the system for package verification

$sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearm
or -o /usr/share/keyrings/docker-archive-keyring.gpg

Add the Docker repository to the system's package sources

$sudo echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings
/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu $(1lsb_rele
ase -cs) stable” | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Update package Lists to include Docker's repository

$sudo apt update -y

Install Docker and its necessary components

$sudo apt install -y docker-ce docker-ce-cli containerd.io

Enable Docker to start at system boot

$sudo systemctl enable docker

Start the Docker service

$sudo systemctl start docker

Install cri-dockerd (Container Runtime Interface for Docker)

$VERSION=0.3.4

Download the cri-dockerd archive

$sudo wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VERSION}
/cri-dockerd-${VERSION}.amd64.tgz

Extract the contents of the downloaded archive

$sudo tar xvf cri-dockerd-${VERSION}.amd64.tgz

Move the cri-dockerd binary to the appropriate system directory

$sudo mv cri-dockerd/cri-dockerd /usr/local/bin/

Verify the installation by checking the version

$sudo cri-dockerd --version

Download the necessary systemd service files for cri-dockerd

$sudo wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packagi
ng/systemd/cri-docker.service

$sudo wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packagi
ng/systemd/cri-docker.socket

Move the service files to the systemd directory

$sudo mv cri-docker.socket cri-docker.service /etc/systemd/system/

Modify the service file to reference the correct binary Llocation

$sudo sed -i -e 's,/usr/bin/cri-dockerd, /usr/local/bin/cri-dockerd,' /etc/system
d/system/cri-docker.service

Reload systemd to recognize the new services

$sudo systemctl daemon-reload

Enable cri-dockerd to start at system boot

$sudo systemctl enable cri-docker

Start the cri-dockerd service

$sudo systemctl start cri-docker

Check the status of the cri-dockerd service to ensure it is running

$sudo systemctl status cri-docker

41

DATA ® ® Collaborative
§|NQW c on Administrative Data

5.3.4 Secure Shell (SSH) Access Configuration

This section outlines the necessary steps to establish secure and password-less SSH access between
the master node and worker nodes. This setup facilitates seamless remote management and
communication between the nodes in a Kubernetes cluster.

5.3.4.1 Generating an SSH Key on the Master Node

Generate an SSH key pair with RSA encryption (4096-bit) without a passphrase
$sudo ssh-keygen -t rsa -b 4096 -N "" -f ~/.ssh/id_rsa

Append the generated public key to the List of authorized Reys

$sudo cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Restart the SSH service to apply changes

$sudo systemctl restart ssh

5.3.4.2 Distributing the SSH Key to Worker Nodes

Copy the SSH public key from the master node to each worker node
$ssh-copy-id -i ~/.ssh/id_rsa.pub root@<node_ip_address>

Restart the SSH service on the worker node to apply the changes
$ssh root@<node_ip_address> 'sudo systemctl restart ssh'

5.3.5 Installation of Kubernetes Cluster

This section provides a structured approach to setting up a Kubernetes cluster, including installing
necessary dependencies, configuring the cluster, deploying it, and setting up a metrics server for
monitoring resource utilization.

5.3.5.1 Installation of Required Packages

Install essential dependencies for Kubernetes cluster management

$sudo apt-get install -y socat conntrack

Download KubeKey, a Lightweight tool for Kubernetes installation and cluster
management

$sudo curl -sflL https://get-kk.kubesphere.io | sh -

Move the KubeKey binary to a system-wide directory for easy execution and
remove temporary installation files

$sudo mv kk /usr/local/bin && sudo rm kubekey*

42

DATA ® ® Collaborative
§|N3W c on Administrative Data

5.3.5.2 Creating and Editing the Cluster Configuration

Generate a configuration file for the Kubernetes cluster
$sudo kk create config -f kubernetes-config.yaml
Open the configuration file for editing and specify cluster details
Sample configuration:
hosts:
- {name: {node name}, address: {worker ip address}, internalAddress:
{worker_1ip address}, user: root, privateKeyPath: "~/.ssh/id _rsa"}
#
Rubernetes:
List of supported versions can be found at:
https://github.com/kubesphere/kubekey/blob/master/docs/kubernetes -
versions.md
version: v1.25.3
containerManager: docker

plugin: flannel

#

#

73 00C

network:
#

$sudo nano kubernetes-config.yaml

5.3.5.3 Deploying the Kubernetes Cluster

Deploy the cluster using the specified configuration file
$sudo kk create cluster -f kubernetes-config.yaml

5.3.5.4 Deploying the Metrics Component

Deploy the Metrics Server to monitor cluster resource usage

$sudo kubectl apply -f $DAN_REPOSITORY/blob/main/docs/configs/metrcics-server-
components.yaml

Verify that the Metrics Server deployment is active

$sudo kubectl get deployment metrics-server -n kube-system

Ensure that the Metrics Server pod 1s running

$sudo kubectl get pods --namespace kube-system

Display node-level resource usage statistics

$sudo kubectl top nodes

5.3.6 Installation of Persistent Storage

This section outlines the necessary steps to install and configure persistent storage using Longhorn.
These steps ensure that each node is equipped with the required dependencies, and that Longhorn
is correctly deployed and verified within the Kubernetes cluster.

43

DATA ® ® Collaborative
§|N3W c on Administrative Data

5.3.6.1 Installation of Required Packages for Longhorn

Update package Lists to ensure availability of the Llatest versions
$sudo apt update

Install Open-iSCSI and NFS support, which are essential for Longhorn storage
operations

$sudo apt install -y open-iscsi nfs-common

Enable and start the 1SCSI daemon to ensure automatic startup on boot
$sudo systemctl enable iscsid

$sudo systemctl start iscsid

Load the 1SCSI kernel module to support 1SCSI storage connections
$sudo modprobe iscsi_tcp

Persistently enable the i1SCSI module to ensure it loads at boot time
$echo "iscsi tcp" | sudo tee /etc/modules-load.d/iscsi_tcp.conf

5.3.6.2 Installation of Longhorn from the Master Node

Add the official Longhorn Helm repository to the Helm package manager
$sudo helm repo add longhorn https://charts.longhorn.io

Update the Helm repository to fetch the latest available versions

$sudo helm repo update

Create a dedicated namespace for Longhorn within the Kubernetes cluster
$sudo kubectl create namespace longhorn-system

Deploy Longhorn using Helm within the dedicated namespace

$sudo helm install longhorn longhorn/longhorn --namespace longhorn-system
Verify the installation by Llisting all pods in the Longhorn namespace
$sudo kubectl get pods -n longhorn-system

Apply a Kubernetes configuration to expose the Longhorn UI via a NodePort
service

$sudo kubectl apply -f $D4AN_REPOSITORY/blob/main/docs/configs/longhorn-
proxy.nodeport.yaml

The Longhorn UI can now be accessed via HTTP at:

http://<server_1ip address>:30080

5.3.6.3 Verification of Longhorn Deployment

Ensure that the Longhorn pod manager is running on each node
$sudo kubectl get pods -n longhorn-system -o wide | grep {node_name}
Verify the integration of nodes with Longhorn storage

$sudo kubectl get nodes.longhorn.io -n longhorn-system

44

DATA ® ° Collaborative
§|NQW c on Administrative Data

5.3.7 Configuring Kubectl on the Workstation

This section provides guidance on configuring kubectl on the workstation, ensuring connectivity
with the Kubernetes cluster. The process varies based on whether kubectl is newly installed or if an
existing configuration is present.

5.3.7.1 Configuration for a Newly Installed Kubect!

5.3.7.1.1 Download the kubernetes config file from the cluster

C:\>mkdir $HOME\.kube

C:\>scp root@$Env:DAN_MASTER_IP_ADDRESS:/etc/kubernetes/admin.conf
$HOME\ . kube\config

C:\>kubectl config get-contexts

C:\>kubectl get nodes

5.3.7.1.2 Edit/Modifying the Kubeconfig File

The kubeconfig file should be updated as shown below:

U 1: address to the server
O 2: Cluster name

O 3: default namespace
O 4: context name

= admin.kubeconfig X

apiVersion: vi
clusters:
- cluster:
certificate-authority-data: LS@tLS1CRUdITiBDRVIUSUZIQOFURSOTLSOtCk1ISUMvakNDQWV
server:| https://10.233.0.1:443 1
name: local 2
contexts:
- context:
cluster: local
e: default 3
user: admin
name: admin@local
current-context: admin@local
kind: Config
preferences: {}
users:
- name: admin
user:
client-certificate-data: LS@tLS1CRUdITiBDRVIUSUZIQOFURSOtLSEtCk1ISURCakNDQWU2ZOF
client-key-data: LS@tLS1CRUdITiBSUBEgUFJIVKFURSBLRVktLSBtLQpNSUlFcEFIQkFBSBNBUU

FIGURE 5-4 EDIT THE KUBECONFIG FILE

45

DATA ® ® Collaborative
§|N3W c on Administrative Data

5.3.7.1.3 Verify the access to the cluster

Verify the Cluster Connection Again
C:\>kubectl config get-contexts
C:\>kubectl get nodes

5.3.7.2 Configuration When an Existing Cluster is Already Set Up
If the workstation already has an existing Kubernetes cluster configuration, follow these steps to
merge the new kubeconfig file.

5.3.7.2.1 Download the kubernetes config file from the cluster

Copy the new kRubeconfig file from the master node to the Local workstation
C:\>scp root@$Env:DAN_MASTER_IP_ADDRESS:/etc/kubernetes/admin.conf
$HOME\ . kube\new-config

5.3.7.2.2 Modifying the new-config File

The new-config file should be edited as illustrated on “Figure 5-4 Edit the kubeconfig file”

5.3.7.2.3 Merge both the new and current config files

Temporarily set the KUBECONFIG environment variable to include both
configurations

C:\>$Env:KUBECONFIG="$HOME\ .kube\config;C:\$HOME\.kube\new-config"

Backup the existing configuration file before makRing changes

C:\>cp $HOME\.kube\config $HOME\.kube\config.bak

Merge the new kubeconfig file with the existing one

C:\>kubectl config view --flatten > $HOME\.kube\config.merged

Replace the default kubeconfig file with the merged configuration
C:\>mv -Force $HOME\.kube\config.merged $HOME\.kube\config

Remove the temporary new-config file

C:\>Remove-Item -Path $HOME\.kube\new-config

Reset the KUBECONFIG environment variable to point to the final configuration
C:\>$Env:KUBECONFIG = "$HOME\.kube\config"

46

DATA ® ° Collaborative
§|NQW c on Administrative Data

5.3.7.2.4 Verify the access to the cluster

Verify the Cluster Connection After Merging

C:\>kubectl config get-contexts

Set the default context to the appropriate Kubernetes cluster
C:\>kubectl config use-context <context-name>

Verify that the nodes are accessible

C:\>kubectl get nodes

5.3.8 Clean-Up Procedures

This section provides guidance on securing the server environment by disabling root SSH login on all
nodes, including both master and worker nodes. Restricting root access enhances security and
mitigates unauthorized access risks.

5.3.8.1 Disabling Root SSH Login

Remove the Line that explicitly enables root Login from the SSH configuration
file

$sudo sed -i '/~PermitRootLogin yes$/d' /etc/ssh/sshd_config

Restart the SSH service to apply the changes

$sudo systemctl restart ssh

5.3.9 Deployment of the Minimum Data Lake Stack

This section outlines the step-by-step procedure for deploying the essential components of a data
lake, including MinlO for storage, JupyterHub for analytics, and Apache NiFi for data ingestion. The
deployment is performed from the workstation onto a Kubernetes cluster.

5.3.9.1 Deploy MinlO (Storage)

Navigate to the MinIO deployment directory

C:\>cd $Env:DAN_WORKSPACE_CODE\d4n-minio

Create a dedicated namespace for storage components

C:\>kubectl create namespace d4n-storage

Copy the Llocal configuration file and edit it if necessary

C:\>cp values.local.yaml config.yaml

Install or upgrade MinIO using Helm, ensuring proper configuration

C:\>helm upgrade --cleanup-on-fail --install minio . --namespace d4n-storage --
values config.yaml

L. If deploying on a local Docker Desktop Kubernetes cluster

47

DATA ® ® Collaborative
§|N3W c on Administrative Data

Apply the Llocal Load balancer configuration to expose MinIO at
http://Localhost:9601

The 1internal service endpoint for JupyterHub and Apache NiFi remains:
http://minio.d4n-storage.svc.cluster. local : 9000

C:\>kubectl apply -f local-loadbalancer.yaml

L. If deploying on a remote server

Apply the NodePort proxy configuration to expose MinIO at
http://{master 1ip address}:3609

The 1internal service endpoint for JupyterHub and Apache NiFi remains:
http://minio.d4n-storage.svc.cluster. local : 9000

C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-storage

5.3.9.2 Deploy JupyterHub (Analytics)

Navigate to the JupyterHub deployment directory

C:\>cd $Env:D4N_WORKSPACE_CODE\d4n-jupyterhub

Add the official JupyterHub Helm repository and update Helm repositories
C:\>helm repo add jupyterhub https://hub.jupyter.org/helm-chart/

C:\>helm repo update

Create a dedicated namespace for analytics components

C:\>kubectl create namespace d4n-analytics

Copy the local configuration file and edit it 1if necessary

C:\>cp values.local.yaml config.yaml

Install or upgrade JupyterHub using Helm with the specified configuration
C:\>helm upgrade --cleanup-on-fail --install jupyter jupyterhub/jupyterhub --
namespace d4n-analytics --version=3.0.3 --values config.yaml

L. If deploying on a local Docker Desktop Kubernetes cluster

Apply the Llocal Load balancer configuration to expose JupyterHub at
http://Llocalhost :8080
C:\>kubectl apply -f local-loadbalancer.yaml

48

DATA ® ® Collaborative
§|N3W c on Administrative Data

£ If deploying on a remote server

Apply the NodePort proxy configuration to expose JupyterHub at
http://{master_1ip address}:30808
C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-analytics

5.3.9.3 Deploy Apache NiFi (Ingestion)

Navigate to the Apache NiFi deployment directory

C:\>cd $Env:DAN_WORKSPACE_CODE\d4n-apache-nifi

Add the official Apache NiFi Helm repository and update Helm repositories
C:\>helm repo add cetic https://cetic.github.io/helm-charts

C:\>helm repo update

Copy the Llocal configuration file and edit it if necessary

C:\>cp values.local.yaml config.yaml

Create a dedicated namespace for ingestion components

C:\>kubectl create namespace d4n-ingestion

Install or upgrade Apache NiFi using Helm with the specified configuration
C:\>helm upgrade --cleanup-on-fail --install nifi cetic/nifi --namespace d4n-ing
estion --version=1.2.1 --values config.yaml

L. If deploying on a local Docker Desktop Kubernetes cluster

Apply the local load balancer configuration to expose Apache NiFi at
https://lLocalhost:8443
C:\>kubectl apply -f local-loadbalancer.yaml

L If deploying on a remote server

Apply the NodePort proxy configuration to expose Apache NiF1i at
https://{master _ip address}:30443
C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-ingestion

49

DATA ® ° Collaborative
§|NQW c on Administrative Data

5.3.10 Integrate Active Directory

1 Apache NiFi: Apache NiFi has built-in support for user authentication and authorization. You
can use NiFi's policies and user groups to define access controls based on roles and
permissions. You can also integrate NiFi with external identity providers using OAuth or LDAP
for more advanced RBAC scenarios. (Link)

2 MinlO: MinlO supports Identity and Access Management (IAM) policies that allow you to
define RBAC. You can create users and groups and assign policies that define their access to
buckets and objects. MinlO also supports integration with external identity providers like LDAP.
(Link)

3 Trino (PrestoSQL): Trino offers a robust security framework that includes RBAC. You can
configure access control using catalog-level, schema-level, and table-level permissions. Trino
supports integration with Hive Metastore and LDAP for user management and authentication.
(Link)

4 JupyterHub: JupyterHub allows you to integrate with various authentication providers (OAuth,
LDAP) and define RBAC for notebooks and resources. You can use tools like Kubernetes RBAC
or JupyterHub's built-in authentication mechanisms to control access to Jupyter notebooks.
(Link)

Integrate Identity Provider: If possible, integrate a single identity provider or SSO solution to
manage user identities and roles centrally. Please see ‘Active Directory Distinguished Name (DN)’ if

you have issue on extracting Distinguish Name from AD.

Remember that RBAC implementation can be complex, especially when dealing with a diverse set
of tools and components. Collaboration between IT, security, and application teams is essential to
ensure a cohesive and effective RBAC setup.

5.3.11 Using the tools

We are in the process of documenting selected use cases focused on setting access policies in MinlO
and building data pipelines in Apache NiFi. These examples aim to demonstrate practical ways the
tools can be used in real-world scenarios. In addition to this, many other guides and tutorials are
available online.

e Minio use-case: Structure the storage for Labor Force and Living Standard datasets
e Apache NiFi use cases: Dataflow to Ingestion sample data
e Run Python script in jupyterhub to ingest data from an ftp server to MinlO. see “Coding tools”

50

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
https://min.io/docs/minio/windows/operations/external-iam/configure-ad-ldap-external-identity-management.html
https://trino.io/docs/current/security/ldap.html
https://github.com/jupyterhub/ldapauthenticator?tab=readme-ov-file#active-directory-integration
https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Minio-Use-case-workshops.pdf
https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Apache-Nifi-use-case-workshop.pdf

DATA ® ° Collaborative
§|NQW c on Administrative Data

A. Annexes
A.1 Datad4Now: IT Guiding Questionnaire

The main objective of this questionnaire is to Identify requirements of the NSO/NSS in country and
the challenges it is facing (mostly focusing on data flow) in technology landscape and is developed
and used by Data for Now team. Many times, the human element is left behind in these processes,
so a focus on skill analysis and how to fill those gaps should also be identified in the process while
following the IT (modernization) strategy of the organization. These challenges should be used as
opportunities to fill skill gaps, or process modernization while incorporating new and innovative
data sources, methods and tools while modernizing the IT architecture. Add new columns for
additional answers. Download IT Guiding Questionnaire

Group ID Question Answer | Answer | Example
1 2.
General g-1 | Date
g-2 Country
g-3 | Individual responding to questions Name/Organization/Title;
(Add as many people as needed Name/Organization/Title

separated by semicolon)

g-4 | Could you briefly describe the
Current Context - Existing
situation/process?

g-5 | Who are the Teams/people
involved in the process?

g-6 | Could you share the IT strategy of
the organization?

g-7 | Could you share any IT
assessments or previous reports
on the IT Infrastructure or IT
architecture diagram?

g-8 | Could you share the IT team
structure (organization chart)

Data ds-1 | Who is the owner of the data and NSO, NSS, Ministry Name,

Source what is the dataset? Gov agency Name, MNO,
Private Company, NGO
Name, etc.

ds-2 | Is there a
mandate/agreement/MoU to get
Data from source? If yes, could
you briefly explain.

ds-3 | Are there any challenges in data data access, data quality,
source? data format, data
inconsistency,
classification/harmonizati
on, etc.

Tools/technology stack currently used:

https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/D4N-IT-Guiding-Questions.xlsx

DATA
(INDW

C

Collaborative

on Administrative Data

Data di-1 | Who is the main
Ingestion person/team/section involved in
Process/ ingestion of this data?
tools
di-2 | How do they get Data from email, flash-drive, web-
Source? scrapping, db-connection
(ODBC/JDBC), Data-
API(REST/SOAP), sFTP,
GraphQL, XBRL, SDMX,
Swagger(OpenAPl), etc.
di-3 | In which format is data source JSON, XML, CSV, Excel,
originally received? .dat, .stat, .txt, Apache
Parquet, Avro, HDF5,
other Binary format, etc.
di-4 | How often do you receive this monthly/annually/
dataset? occasionally, etc.
di-5 | Does it involve geospatial specific (shp, geojson, kml, geoTIiff,
data? If yes, how is it handled? gpkg, gdb — Esri, nc, tab,
etc.)
di-6 | Does the data structure follow any
standards like SDMX/DDI? Does it
have Metadata?
di-7 | Do you use any (Python, R, Apache NiFi,
tool/software/code/scripts to Pentaho, Talend,
ingest data? Informatica, etc.)
di-8 | Did the relevant person/team
receive/attended any training in
above tool/script or required
tool/platform for data ingestion?
di-9 | Can the ingestion process be
automated?
di- Do you follow the ETL or ELT
10 process?
di- How is data transformed into the
11 structure/format that you need?
Does it happen during the
ingestion process or later?
di- Are there any challenges in data
12 ingestion process including human
and technical capacity?
Data db-1 | Who is the main
Storage person/team/section involved in
managing the storage section?
db-2 | What kind of storage media is (Relational-Database,
being used to store the ingested Data Center, File System-
data? NAS, File Server, Data
Warehouse, Data Lakes,
SPSS/SAS application,
Cloud Storage, Geospatial

DATA
(INDW

Collaborative

on Administrative Data

Database (ESRI, QGis),
etc.)

db-4

Who manages security policies
and how do you ensure its
compliance?

db-5

Metadata: Do you use any
metadata standards? (DDI, SDMX,
ISO 11179, etc.) Any metadata
management and dissemination
tools?

db-6

Are there any challenges in data
storage?

Data dp-1 | Who is the main
Processing person/team/section involved in
data processing?
dp-2 | Are there policy/procedures in Role-based-access-control,
place to ensure secure access to user authentication, used
sensitive data? If yes, could you logging and monitoring,
briefly explain. Database access control,
Threat detection, etc.
dp-3 | Is there a data
pseudonymization/anonymization
process in place
dp-4 | What tools/platforms/language do Jupiter Notebook, Python,
you use for querying and R, SPSS, Stata, gGlS,
processing ArcGlS, etc.
dp-5 | How are records from different (e.q., using unique
data sources linked (Record identifier, fuzzy matching,
linking)? probabilistic linkage,
machine learning
algorithm, etc.)
dp-6 | What are the main products or
statistics produced from your
statistical registers system
dp-7 | Are there any challenges in data
Processing?
Data dd-1 | Who is the main
Disseminati person/team/section involved in
on data dissemination?

dd-2

What tools/platforms/language do
you use for data dissemination

dd-3

Did the relevant person/team
receive/attend any training in the
above tool/platform for data
dissemination?

dd-4

Are there any challenges in data
Dissemination?

DATA ® ® Collaborative
§|N3W c on Administrative Data

A.2 Data ingestion tools

A.2.1 Coding tools

Python, R, Java, C#, Scala are some of the programming languages used in data ingestion coding
framework. Below is an example of python script that ingests data from an ftp server to MinlO.

import os

from ftplib import FTP
import boto3

import datetime

def download_from_ftp(ftp_server, username, password, remote_folder, local_filename):
with FTP(ftp_server) as ftp:
ftp.login(user=username, passwd=password)
ftp.cwd(remote_folder)
with open(local_filename, "wb") as file:
ftp.retrbinary("filename.csv", file.write)

def upload_to_s3(s3_bucket, local_filename, s3_subfolder):
s3 = boto3.resource('s3')
bucket = s3.Bucket(s3_bucket)
s3_key = os.path.join("raw", s3_subfolder, "filename.csv")
bucket.upload_file(local_filename, s3_key)

def move_on_ftp(ftp_server, username, password, remote_folder, timestamp):
with FTP(ftp_server) as ftp:
ftp.login(user=username, passwd=password)
ftp.cwd(remote_folder)
new_folder = os.path.join("2023", timestamp)
ftp.mkd(new_folder)
ftp.rename("filename.csv", os.path.join(new_folder, "filename.csv"))

def main():
ftp_server = "10.0.0.1"
ftp_username = "your_ftp_username"
ftp_password = "your_ftp_password"
s3_bucket = "your_s3_bucket"
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")

Step 1: Download from FTP and save locally
download_from_ftp(ftp_server, ftp_username, ftp_password, "/2023", "filename.csv")

Step 2: Upload to S3 with timestamped subfolder
upload_to_s3(s3_bucket, "filename.csv", timestamp)

Step 3: Move file within FTP server to a timestamped subfolder
move_on_ftp(ftp_server, ftp_username, ftp_password, "/2023", timestamp)

Clean up local file after processing
os.remove("filename.csv")

if_name__=="__main__":
main()

DATA ® ° Collaborative
§|NQW c on Administrative Data

A.2.2 Low code Tools

Some Free and open-source low code tools used by various NSS and available in the market
includes Apache NiFi, Airbyte, Pentaho PDI (Kettle), etc.

A.3 Data storage format

A.3.1 Parquet

Apache Parquet is a columnar storage file format optimized for analytical workloads. It is designed
to efficiently store large volumes of data and is compatible with multiple data processing
frameworks, such as Apache Spark, Apache Hive, Apache Drill, and more.

Parquet stores data in a way that allows selective reading of specific columns, significantly reducing
I/0 and speeding up data processing. It supports rich data types and schema evolution, making it
highly versatile for big data analytics.

Good Practices

o Use Compression Wisely: Employ compression algorithms like Snappy or GZIP, depending on
the trade-off between compression speed and size. (Link)

o Partition Data: Partition the dataset by frequent query dimensions (e.g., date or region) to
minimize the amount of data scanned during queries.

o Optimize Column Order: Arrange columns in the file according to their usage frequency to
optimize query performance.

o Chunk Data into Optimal Sizes: Avoid creating too many small Parquet files as this increases
overhead. Target 128 MB to 1 GB file sizes to balance performance and manageability.

o Use Predicate Pushdown: Utilize tools that support predicate pushdown to filter rows during
the scan phase, reducing unnecessary reads.

o Store Metadata Efficiently: Leverage the Parquet file’s internal metadata structure for
schema definitions, minimizing external dependencies.

o Validate Schema Consistency: Ensure consistency in schema when appending new data to
avoid compatibility issues.

o Batch Writes: When writing Parquet files, use batch processing to optimize 1/0 performance
and avoid file fragmentation.

o Avoid Nested Structures If Possible: Flatten deeply nested schemas if query performance
and simplicity are critical.

o Evaluate Tool Compatibility: Ensure that the tool or framework you are using supports the
latest Parquet specification to leverage its full capabilities.

Choosing the right storage format depends on factors like the nature of the data, query performance
requirements, data volume, and the tools and technologies used in your data lake ecosystem. It is often a
trade-off between storage efficiency, processing speed, schema flexibility, and compatibility with analytics
tools.

https://parquet.apache.org/docs/file-format/data-pages/compression/

DATA ® ® Collaborative
§|NQW c on Administrative Data

A.4 Data Virtualization

Data virtualization in data lake architecture involves providing a unified and abstracted view of
data from various sources, including structured, semi-structured, and unstructured data, without
physically moving or replicating the data. It allows users and applications to access and query data
as if it were in a specific location, even though the data might be distributed across different
storage systems, databases, or formats. Data virtualization simplifies data access, enhances agility,
and reduces the need for complex ETL/ELT processes.

Trino (formerly known as PrestoSQL) and Presto are popular open-source tools for data
virtualization and federated querying in data lake architectures. They provide efficient and flexible
ways to access and analyze data from multiple sources in real-time. Other open-source options for
data virtualization include Apache Drill and Denodo, which offer similar capabilities to enable
unified data access across heterogeneous sources within a data lake ecosystem.

1. Trino (PrestoSQL): Trino is a distributed SQL query engine designed for high-performance
data processing across a variety of data sources. It can query data from different storage
systems like HDFS, cloud object storage, relational databases, and more. Trino enables data
virtualization by allowing users to execute SQL queries that span multiple data sources
seamlessly. It supports federated queries, which means it can access and join data from
various sources as if they were in a unique location. (Link)

2. Presto: Presto is another popular open-source distributed SQL query engine that offers
similar data virtualization capabilities. It can query data from various data sources, making it
possible to perform complex analytics across different storage systems without the need for
data movement. (Link)

Example

To run a Trino query on survey data stored in the MinlO subfolder raw/survey/2023, you need to
create an external table in Trino that points to the data location in MinlO. Here is an example of
how to achieve this:

1. Create an External Table:
Run the following Trino SQL query to create an external table that points to the survey data stored
in the MinlO subfolder raw/survey/2023:

CREATE TABLE survey_data (
columnl data_type,
column2 data_type,
... - Add other columns as per your data schema
)
WITH (
format ='ORC', -- Replace with the actual format of your data (e.g., Parquet, CSV, etc.)
external_location = 's3a://raw/survey/2023/'

);

Vi

https://trino.io/
https://prestodb.io/

DATA ® ° Collaborative
§|NQW o on Administrative Data

Make sure to replace data_type with the appropriate data types for your columns

2. Query the Data:
Once the external table is created, you can query the survey data using standard SQL queries in
Trino:

SELECT * FROM survey_data WHERE condition_column ='some_value';

Replace condition_column and 'some_value' with the appropriate filtering conditions based on
your survey data requirements.

A.5 Data processing tools

A.5.1 Collaboration Platform —JupyterHub (Server)

JupyterHub brings the power of notebooks to groups of users. It gives users access to
computational environments and resources without burdening the users with installation and
maintenance tasks. Users including statisticians, researchers, and data scientists - can get their
work done in their own workspaces on shared resources which can be managed efficiently by
system administrators. It is customizable and scalable, and is suitable for small and large teams, and
large-scale infrastructure. (Link)

A.5.2 Collaboration Platform - JupyterLab

JupyterlLab is an open-source, web-based interactive development environment (IDE) for Jupyter
notebooks, code, and data. It provides a flexible interface for programming in languages like
Python, R, and Julia, enabling data visualization, interactive computing, and reproducible research.
It extends the functionality of Jupyter Notebooks with support for multiple panes, extensions, and
collaborative features. In addition to Python and R, we can also use Stata and QGIS within
JupyterLab as shown below:

Stata (Source)

A licensed version of Stata must already be installed. stata_kernel has been reported to work with at least
Stata 13+ and may work with Stata 12.

We can run Stata in a Jupyter Notebook environment using the "Stata Kernel" or by using the "Stata in
Jupyter" integration. This allows you to combine the interactive capabilities of Jupyter Notebooks with the
statistical and data analysis power of Stata.

Running STATA on jupyterlab may have some limitation compared to running Stata directly in its native
environment. You can find more details and limitation in the kernel documentation

Vii

https://jupyter.org/hub
https://kylebarron.dev/stata_kernel/
https://kylebarron.dev/stata_kernel/using_stata_kernel/limitations/

DATA > Collaborative
SINOW c on Administrative Data

& = ¢ @ http://localhost:8888/notebooks/Untitled1.ipynb?kernel_name=stata# & W e
: Jupyter Untitled1 Last Checkpoint: 08/06/2018 (unsaved changes) stata | Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Stata O

+ x & B A ¥ MRun B C W Markdown v

N
Example Notebook with Stata

This is a basic example notebook to show available features when using Jupyter with stata kernel . See documentation
at: https://kylebarron.github.io/stata_kernel/

In []: sysuse auto

In []: foreach i in 12 3 4 {
/* use comments liberally */
display "hello world!" ///
" iteration “i'"

}
In []: program helloworld
display "Hello world!"
end
In [1: helloworld

Geo-spatial analysis

QGIS, which stands for "Quantum Geographic Information System," is an open-source geographic
information system (GIS) software that allows users to create, analyze, visualize, and manage
geographic and spatial data. It provides a powerful platform for working with several types of
spatial data, such as maps, satellite imagery, GPS data, and more.

It is possible to run QGIS within a Jupyter Notebook environment using PyQGIS to interact with
QGIS from within a Python script, and you can execute these scripts in a Jupyter Notebook. This
approach allows you to perform geospatial analysis, data manipulation, and more using the QGIS
functionality exposed through PyQGIS. Source

viii

https://plugins.qgis.org/planet/tag/jupyter/

DATA
(INDW

[index.ipynb X

£

M geocoding.ipynb .
D ™M » m c » XDownoad & & O GitHub & Binder

Interactive geocoding application with Panel
import panel as pn

def my_plot({user_input="Giefinggasse 2, 1210 Wien", buffer_meters-1008):
location - locator.geocods(user_input)
geocoded_gdf — location_to_gdf(location, user_input)
map_plot = hvplot_with_buffer(geocoded_gdf, buffer meters,
title=f'Geocoded address with {buffer_me
return map_plot.opts(active tools=['wheel_zoom'])

3

: | kw = dict{user_input="Gicfinggasse 2, 1218 Wien", buffer_meters=(8,10060)

pn.interact(my_plot, **ku)

3

user_input

Giefinggasse 2, 1210 Wien

C

Collaborative

on Administrative Data

B geocoding.ipynb []

C [JRender on Save

Panel - Geocoding Demo HO #: O

user_input
[Giefinggasse 2, 1210 Wien I

buffer_meters: 10000
a

Geocoded address with 10000m buffer

AT 0

; |

FEEERS ¢
\Korneuburg B
\ N
N\
\ "

’

a3 K\ualer}euburg A - -"I
- AN Deutsch-Wag!

buffer_meters: 1000

>] \}//
4825 P X
Geocoded address with 1000m buffer - r “{:“ \
jdorf o e R
1] o 7 UVien'f\\ﬁ
4 482 + . \
48.275 i >
- o /

48.265

1/ B3

Ay © OpenStreetMap contributors
T

T T
42 16425 1643 16435 1644
x

T T
16.415 16

pn.template.FastListTemplate(
site="Panel”, title="Geocoding Demo”,
main=[pn.interact (my_plot, **kw)
).servable();

A.5.3 Framework - Apache spark

Apache Spark is an open-source unified analytics engine for large-scale data processing. It provides high-level
APls in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also
supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, pandas
APl on Spark for pandas workloads, MLIlib for machine learning, GraphX for graph processing, and Structured
Streaming for incremental computation and stream processing.

(Source: https://spark.apache.org/docs/latest/)

A.5.4 Framework — Dask

Dask is an open-source Python library that allows users to perform parallel computing on large data sets and
machine learning tasks. It provides distributed computing for Python (https://www.dask.org/)

A.5.5 DuckDB

DuckDB is an open-source high-performance analytical database system. It is designed to be fast, reliable,
portable, and easy to use. DuckDB provides a rich SQL dialect, with support far beyond basic SQL. DuckDB
supports arbitrary and nested correlated subqueries, window functions, collations, complex types (arrays,
structs, maps), and several extensions designed to make SQL easier to use. DuckDB is available as a
standalone CLI application and has clients for Python, R, Java, Wasm, etc., with deep integrations with
packages such as pandas and dplyr. (Source - https://github.com/duckdb/duckdb)

https://spark.apache.org/docs/latest/
https://www.dask.org/
https://duckdb.org/docs/guides/sql_features/friendly_sql

DATA ® ° Collaborative
§|NQW c on Administrative Data

A.5.6 Language - Python

A versatile language with libraries like Pandas, NumPy, SciKit-learn, statsmodels, dask, etc. which are widely
used for data manipulation, analysis, and statistical computations. You can run Dask on: Laptops,
Kubernetes, HPC job schedulers, Cloud SaaS services, and Legacy Hadoop/Spark clusters.

A.5.7 Language-R

A language dedicated to statistical computing and graphics with popular packages like dplyr, tidyverse and sf
for geospatial analysis. It's favored by statisticians and data analysts for its extensive collection of statistical
packages.

A.5.8 OpenRefine

An open-source tool for data cleaning and transformation. It provides features for data profiling, data
enrichment, and reconciling inconsistencies.

A.5.9 Geospatial - QGIS

QGIS, formerly known as Quantum GIS, is a free, open-source geographic information system (GIS) software
that allows users to view, edit, analyze, and publish spatial data. QGIS is a free alternative to proprietary GIS
software like ESRI's ArcGIS products. It has similar functions and features, and supports a variety of spatial
data file extensions, including .shp, .tif, .csv, and .img. QGIS is compatible with Linux, Unix, Mac, and
Windows. (Source — www.qgis.org)

A.6 Data orchestration tools

A.6.1 Dagster:

Dagster is a data orchestrator specifically designed to address the challenges of data quality,
testing, and monitoring in complex data workflows. It focuses on building reliable, testable, and
maintainable data pipelines while emphasizing data lineage, observability, and data quality
assurance.

Key features of Dagster:

e Data Quality Assurance: Dagster provides built-in features for data testing, validation, and
quality assurance. It ensures that data flowing through the pipeline meets defined criteria
and expectations.

e Type System: Dagster uses a strong type of system to ensure that data transformations are
correctly and consistently defined, helping prevent runtime errors.

e Modularization: Dagster encourages modularization of data pipeline components, making it
easier to test and maintain individual components.

e Data Lineage: Dagster tracks data lineage, meaning you can trace where data came from
and where it goes in your pipeline. This is essential for understanding and troubleshooting
data issues.

http://www.qgis.org/

DATA ® ° Collaborative
§|NQW c on Administrative Data

e Orchestration: While Dagster itself does not handle scheduling and execution, it can
integrate with other orchestration tools like Apache Airflow or Prefect for running pipeline
executions.

A.6.2 Apache Airflow:

Apache Airflow is a general-purpose workflow scheduler that allows you to define, schedule, and
execute complex workflows as directed acyclic graphs (DAGs). It is widely used for orchestrating
several types of tasks, including data processing, ETL, and more.

Key features of Apache Airflow:

e Workflow Orchestration: Airflow is focused on orchestrating workflows and automating
task scheduling and executing in various scenarios.

e Dynamic DAGs: Airflow supports dynamically generating DAGs and tasks based on
configurations, which can be useful for handling varying workloads or dynamic data sources.

e Scheduling: Airflow provides powerful scheduling capabilities for executing tasks at specific
times or intervals.

e Extensibility: Airflow allows you to extend its functionality through custom operators,
hooks, and plugins, enabling integration with a wide range of systems and services.

e Community and Ecosystem: Apache Airflow has a large and active community, resulting in a
rich ecosystem of contributed operators, plugins, and integrations.

A.7 Security and authorization

A.7.1 Functionalities to consider in security

1. Data Anonymization/Pseudonymization: Anonymizing or pseudonymizing sensitive data
before sharing allows you to provide access to data without revealing the identities of
individuals. This approach maintains privacy while enabling analysis.

2. Data Masking/Tokenization: Replace sensitive data with masked or tokenized versions
while preserving the data format. This approach is useful when the actual data is not
required for analysis, but the structure is.

3. Secure Data Sharing Platforms: Implement secure data sharing platforms that enforce strict
access controls and encryption for data in transit and at rest. These platforms often allow
fine-grained control over who can access which parts of the data.

4. Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC): Implement
RBAC and ABAC mechanisms to ensure that users can only access data and perform actions
that are relevant to their roles and responsibilities.

Xi

DATA ® ° Collaborative
§|NQW o on Administrative Data

10.

11

12.

13.

14.

15.

16.

Data Virtualization: Data virtualization tools allow users to access data from various sources
without having direct access to the underlying data. This provides a layer of abstraction
while maintaining control over data access.

Data Sharing Agreements: Establish clear data sharing agreements with external parties,
defining the purposes for which the data will be used, the security measures that need to be
in place, and the responsibilities of both parties.

Secure APIs: Provide controlled access to data through secure APIs. This enables users to
retrieve the data they need without direct access to the underlying database.

Time-Limited Access: Grant temporary access to data for specific purposes and timeframes.
Once the designated period is over, the access is revoked.

Data Minimization: Share only the minimum amount of data necessary for the intended
analysis or purpose, reducing the risk of exposing sensitive information.

Data Governance and Auditing: Implement robust data governance practices, including
tracking data access and usage. Regular audits help ensure that data is being used
appropriately, and that compliance is maintained.

. Consent Management: If applicable, obtain explicit consent from data subjects for sharing

their data. Implement mechanisms to manage and track consent preferences.

Encryption and Key Management: Encrypt data before sharing it and manage encryption
keys securely. This way, even if unauthorized access occurs, the data remains unintelligible
without the proper decryption keys.

Secure Collaboration Tools: Utilize secure collaboration and analytics platforms that provide
a controlled environment for sharing and analyzing data without exposing the raw data to
users.

Education and Training: Educate users about the importance of data privacy and security,
ensuring they understand their responsibilities and the potential risks associated with
mishandling data.

Regular Risk Assessments: Conduct regular risk assessments to identify potential
vulnerabilities and address them before they lead to security breaches.

Data Classification: Classify data based on its sensitivity and restrict access accordingly.
Different levels of data may have different access requirements.

Remember that each organization's situation is unique, so it's important to tailor these approaches

to your specific data, user base, and compliance requirements. Collaboration between IT, legal,

compliance, and business stakeholders is crucial to successfully implement these approaches while

maintaining security and privacy.

A7.2

Access Control

Focusing more from Access Control, Role-Based Access Control (RBAC) and Attribute-Based Access

Control (ABAC) are access control mechanisms that help manage user access to data and resources

in a way that aligns with security and compliance requirements.

Xii

DATA
(INDW

C

Role-Based Access Control (RBAC): In an RBAC system, access is determined based on the roles

that users hold within the organization. Each role has associated permissions that define what

Collaborative

on Administrative Data

actions a user with that role can perform. Users are then assigned roles, and their access rights are

determined by the permissions associated with those roles. RBAC simplifies access management by

grouping users into roles and applying permissions at the role level.

Attribute-Based Access Control (ABAC): ABAC is a more flexible access control model that
considers various attributes and conditions when making access decisions. In ABAC, access is

granted or denied based on the values of attributes associated with users, resources, and the

environment, along with predefined policies.

Feature

Role-Based Access Control
(RBAC)

Attribute-Based Access Control
(ABAC)

Core Concept

Access based on predefined
roles

Access based on attributes/policies

Decision Basis

Who you are (role)

Who, what, when, where, why (context)

Complexity Simpler to implement and More complex implementation
manage

Flexibility Limited (fixed role definitions) Highly flexible (dynamic decisions)

Granularity Coarse-grained Fine-grained

Scalability Role explosion in complex Scales better for complex scenarios
environments

Policy Expression "User A has Role X" "Users with Attribute B can access

Resource C under Condition D"

Implementation Lower Higher

Effort

Maintenance Easier for simple systems, Complex initially, but can be more
harder as roles multiply manageable long-term

Typical Use Cases SMBs, simpler access needs Large enterprises, dynamic

environments

Dynamic Context

Limited or none

Extensive (time, location, device, etc.)

permissioning

Examples Active Directory groups, XACML, AWS IAM policies, Okta ABAC
traditional file permissions

Role/Attribute Centralized role assignment Distributed attribute collection

Management

Audit Complexity Easier to audit More complex audit trails

Risk Management Less precise, may lead to over- | More precise control reduces risk

It's worth noting that some systems combine both RBAC and ABAC principles to create a hybrid

approach that leverages the strengths of each model to provide a balance between simplicity and
flexibility in access control.

In addition to that, the organization must also implement:

Xiii

DATA ® ° Collaborative
§|NQW o on Administrative Data

A7.3

Authentication and Identity management: Verify user identity before any interaction with
the platform and limit access to tools based on user roles. A regular review and update of
access permissions ensures they're appropriate and up-to-date according to organization
employees.

Authorization and access control: The recommendation is to define access policy based on
user groups(roles) and assign uses to the various groups for users and groups. Then define
an access control list related to groups and users and apply to the resources available on the
data lake.

Network security: You can establish firewalls and define an IP address range for your
trusted clients. You can also segment your network to isolate the data lake environment
from other systems.

Data protection: The data lake provides encryption mechanisms to protect the data. Data in
transit can be secure using the industry-standard Transport Layer Security (TLS 1.2) protocol
to secure data over the network.

Auditing: Implement comprehensive auditing mechanisms to track user activities and data
access. Set up real-time monitoring to detect suspicious activities and potential security
breaches

Tools

Centralized access management through Active Directory (AD) and managing roles and access at

the application level both have their own advantages and disadvantages. The choice between

these approaches often depends on the specific needs and context of your organization. Let's

examine the advantages and disadvantages of each approach and how they relate to implementing

role-based access:

Central Access Management through Active Directory:

Advantages:

1.

Centralized Control: Active Directory provides a centralized location for managing user
identities, authentication, and access control across multiple applications. This can
streamline administration and reduce the risk of inconsistencies.

Single Sign-On (SSO): Active Directory allows for single sign-on, enabling users to
authenticate once and access various applications without the need for multiple logins. This
improves user experience and security.

Scalability: AD is designed to handle large numbers of users and resources, making it well-
suited for enterprises with complex access management requirements.

Integration: Many enterprise applications and services can integrate directly with Active
Directory for authentication and authorization, simplifying access management.

Disadvantages:

Xiv

DATA ® ° Collaborative
§|NQW o on Administrative Data

1. Dependency: A centralized approach means that if there's a problem with the Active
Directory infrastructure, it could impact access to multiple applications.

2. Limited Granularity: While Active Directory supports role-based access to some extent, it
might not provide the same level of fine-grained access control as application-level
management.

Managing Role and Access at the Application Level:
Advantages:

1. Granular Control: Managing access at the application level allows for more fine-grained
control over who has access to specific features and functions within an application.

2. Flexibility: Application-level access control is flexible and can be tailored to the specific
needs of each application. This can be particularly useful when applications have varying
access requirements.

3. Isolation: If a particular application experiences issues with its access management, it won't
necessarily affect the access controls of other applications.

Disadvantages:

1. Complexity: Managing access at the application level can become complex, especially in
organizations with numerous applications. It can lead to duplicated efforts and
inconsistencies in access policies.

2. Increased Administration: Each application's access management needs to be set up and
maintained separately, which can be time-consuming and resource-intensive.

3. Security Risks: If access control isn't well-implemented at the application level, there's a risk
of security vulnerabilities or misconfigurations.

ISN working on windows environment already used an on-premises version of AD (LDAP). Though
some open-source alternatives exist such as: OpenLDAP or 389 Directory Server

User roles and groups on data lake involves defining access permissions and privileges for different
users based on their responsibilities and needs. Here are some examples of user roles and groups
that could be configured

Role/group Description Tools Bucket

administrators | - Managing user accounts, configuring security All All
settings

- Maintaining infrastructure: Update, Upgrade etc.
- Ensuring metadata management, backups

Data engineer | - Designing and maintaining data pipelines, ETL - Apache NiFi - raw
processes, data integration - Dagster -
- Create and manage data pipeline and ETL-related | - Jupyterlab

XV

DATA ® ° Collaborative
§|NQW o on Administrative Data

Role/group Description Tools Bucket
folders - MinlO anonymized
- Permissions to create and manage scheduled - Trino - staging
workflows
Data steward | - Ensuring data anonymization, adhering to data - Trino - raw
governance policies - MinlO -
- JupyterLab anonymized
- staging
- aggregated
Data analyst | - Analyzing and generating insights from data, - MinlO -staging
creating reports and visualizations. - Trino - aggregated
- Developing and maintains data models - Jupyterlab (R,
- Create and run custom queries and scripts Python, QGIS)
Public access | - Accessing publicly available datasets or reports - Trino - aggregated
- Read-only access to publicly accessible datasets - Jupyterlab
and reports

A.7.3.1 Active Directory

Active Directory (AD) is Microsoft’s directory and identity management service for Windows
domain networks. It was introduced in Windows 2000, is included with most MS Windows Server
operating systems, and is used by a variety of Microsoft solutions like Exchange Server and
SharePoint Server, as well as third-party applications and services.

Source Useful link: what is LDAP authentication

A.7.3.2 OpenLDAP

OpenlLDAP Software is an open-source implementation of the Lightweight Directory Access
Protocol(LDAP).LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a
lightweight protocol for accessing directory services, specifically X.500-based directory services.
LDAP runs over TCP/IP or other connection-oriented transfer services. The nitty-gritty details of
LDAP are defined in RFC2251 "The Lightweight Directory Access Protocol (v3)" and other
documents comprising the technical specification RFC3377. This section gives an overview of LDAP
from a user's perspective.

Source

A.7.4 Active Directory Distinguished Name (DN)

The connection between components and Active Directory for user identification relies on the
distinguished name (DN) of users, groups, and organizational units. The DN uniquely identifies each
entry in the directory. Below is the process for retrieving the DN of an organizational unit, user, or
group.

XVi

https://www.cyberark.com/fr/what-is/active-directory/
https://www.redhat.com/en/topics/security/what-is-ldap-authentication
https://www.openldap.org/

DATA ® ® Collaborative
§|NQW c on Administrative Data

To retrieve DN you first need to enable View->Advanced Features

— Active Directory Users and Computers = o X
File Action View Help
@ | 5t Add/Remove Columns...

- Active Direc Large Icons n
;-_ Save:fQ Small Icons
> #a Techijac List ntainer for up...

ntainer for up...

® Detail ntainer for do...
/ ntainer for sec...
gntacts, Groups, Computers as containers I S I—

FilteDptions...

Customize...

< >
Enables/disables advanced features and objects

FIGURE A-1 ACTIVE DIRECTORY ADVANCE FEATURE

This brief tutorial & will guide you on how to retrieve the DN for a user, group, or organizational

unit. Below step-by-step diagram shows how to retrieve the DN for user.

 Active Directory Users and Computers - [m] X
File Action View Help

o 0 /0 XEd=HE/PaETa%

] Active Directory Users and Com|| Name Type Description A
3 Seved Quers ¥
v TECth-?C!(.CDm %Allow Copy-- rers in this group c...
- g:’rl::u"rs B CertF Addtoa 9"’?"9“' vers of this group ...
S Doriain Costroliers B2 Clone Name Mappings... sers of this group t...
S ForeignSecurityPrincipal !.; Defau Disable Account account manage...
1 Keys %Denle Reset Password... vers in this group ...
) LostAndFound %Dny\- Moe? dministrators Gro...
| Managed Service Accour %Dnsm e Elome Do lients who are per...
| Program Data &2 Dom: IR rated administrato...
| System EDomz el rkstations and ser...
. Users ﬂDoma All Tasks s main controllers i...
1 NTDS Quotas &2 Dom: main guests
_ TPM Devices %Doma Cut main users
&2 Enten Delete rated administrato...
B2 Enten; Rename wers of this group ...
%Emen rers of this group ...
EBGroup vers in this group c...
E.; Guest Help & n account for gue...
%Key Admins Secunty Group.. Members of this group ...
!.; krbtgt User Key Distribution Center ...
< > &?rut_egtﬂ]s... Security Group... Members of this aroup ... bt

Opens the properties dialog box for the current selection.

Right click the user and select properties as shown in above figure. In the properties, open the
‘Attribute Editor’ tab and find ‘distinugushedName’ property as shown in below figure.

XVii

https://www.youtube.com/watch?v=veEA3L7dWZA

DATA
(INDW

C

Collaborative

on Administrative Data

)

| File Action View Help
e nm & O

 Active Directory Users and C
» | Saved Queries
v @3 Techijack.com
1 Builtin
» = Computers
> &1 Domain Controllers
» -] ForeignSecurityPrinci
> & Keys
»] LostAndFound
7 Managed Service Acg
» ... Program Data
» [System
. Users
» 21 NTDS Quotas
» 2] TPM Devices

Services

Performance

Administrator Properties

Published Certfficates Member Of Password Replication Dialin Object
Remote control

?

X

defautClass Store <ot set>
| department ot set>
| department Number <ot set>
| descrption Builtin account for administering the compute
desktop Profile <not set>
destination or <not set>
display! <not set>
| et Bictabla oot sk ‘/
datinguished CN=AG CN=Users DC-Techiack [| |
T e
| dSASignature <not set>
dSCorePropagationD... 3/21/2019 1:17:28 AM India Standard Time:
‘ dynamicLDAPServer <not set> v
< >
Edt Fiter
o] om | e e

FIGURE A-2 ACTIVE DIRECTORY DISTINGUISHED NAME FOR USER

Similarly, you can retrieve the User Group DN. Just right click on the group as shown in below figure

and follow same step as above by selecting ‘Attribute editor’ tab and find ‘distinugushedName’

property.

. Active Directory Users and Computers

File

Action View Help

e 2m 0/ XEL Hm 2%

»
»
>
>
>

] Active Directory Users and Com
5 | Saved Quernies
v 3 Techijack.com

» | LostAndFound

~ Builtin

| Computers

3. Domain Controllers

| ForeignSecurityPrincipal:
1 Keys

. Managed Service Accour
| Program Data

= System
| Us~~
= N1

3 TH

Delegate Contro
Find...

New
All Tasks

View

Name

‘ &Administratcr
B2 Allowed RO...
| B2, Cert Publish...
‘ % Cloneable D...
E.; DefaultAcco...
| 2 Denied ROD...
2 DnsAdmins
|2 DnsUpdatep..
% Domain Ad...

% Domain Co...
| 5 Narmain Con..
l... Gue...

Users
seA...
se K...
seR..

» olic..

Type

User

Security Gr
Security Gr
Security Gr
User

Security Gr
Security Gr
Security Gr
Security Gr
Security Gr

. Security Gr

Security Gr
Security Gr
Security Gr
Security Gr
Security Gr
Security Gr
User

Security Gr
User

XViii

DATA ® ° Collaborative
§|NQW o on Administrative Data

A.8 Kubernetes cluster

A Kubernetes cluster is a production-grade container orchestration platform that automates the
deployment, scaling, and management of containerized applications. In a DevOps context, it serves
as the foundation for implementing continuous deployment, microservices architecture, and cloud-
native applications. Using a Kubernetes cluster is not mandatory for deploying data platforms or
other infrastructure components. Whether you should use Kubernetes depends on your specific
requirements and goals. Here’s a breakdown of the advantages and disadvantages of using
Kubernetes, as well as recommendations for when to use it.

Advantages of Using Kubernetes

1. Scalability and High Availability
e Automatic scaling of applications based on demand
e Built-in load balancing and distribution
e Self-healing capabilities for failed containers
e Multi-zone and multi-region deployment support
2. DevOps Integration
e Declarative configuration management
e Integration with CI/CD pipelines
e Rolling updates and rollbacks
e Infrastructure as Code (laC) support
3. Resource Optimization
e Optimized container scheduling and placement
e Resource quota management
e Automated bin packing
e Cost optimization through resource sharing

Disadvantages of Using Kubernetes

1. Operational Complexity
e Steep learning curve for teams
¢ Complex networking and security configurations
e Requires specialized expertise for maintenance
e Monitoring and troubleshooting challenges e.g., "Complexity in debugging issues across
distributed systems."
2. Resource Requirements
¢ Significant infrastructure overhead for small applications
¢ Higher operational costs for small-scale deployments
¢ Memory and CPU intensive for the control plane
3. Security Considerations
o Complex security configuration requirements
o Multiple attack surfaces to protect

XiX

DATA ® ° Collaborative
§|NQW o on Administrative Data

¢ Certificate management overhead
e Regular security updates needed

Kubernetes offers significant benefits for managing complex, containerized applications but comes
with added complexity and costs. Whether you should use Kubernetes depends on your specific use
case, application complexity, and operational capacity. For simpler deployments or for those new
to container orchestration, alternative approaches or managed services may offer a more practical
starting point. For large-scale, complex applications requiring advanced orchestration and
automation, Kubernetes can provide powerful solutions.

Below are few tools available to deploy/manage Kubernetes cluster

A.8.1 Kubeadm

Kubeadm is the official Kubernetes cluster bootstrapping tool maintained by the Kubernetes
community. It focuses specifically on the core cluster initialization and management tasks. Its main
strengths lie in its widespread adoption, extensive documentation, and strong community support.
The tool excels at providing a standardized way to create conformant clusters. However, kubeadm
requires more manual configuration for additional components and can involve more complex
setup procedures compared to more automated solutions.

Advantages:
o Official Kubernetes tool with extensive community support
¢ Well-documented and standardized approach
e Greater flexibility in cluster configuration
e Strong security practices and regular updates
e Wide ecosystem compatibility

Disadvantages:
e A more complex initial setup process
e Requires additional tools for complete cluster management e.g., "Third-party tools for
logging, monitoring, or networking."
e Manual configuration needed for many add-ons
e Steeper learning curve for beginners

A.8.2 KubeKey

KubeKey is an open-source installer developed by KubeSphere that provides a more streamlined
approach to deploying Kubernetes clusters. It combines the installation of Kubernetes and related
cloud-native tools into a single process. The primary advantages of KubeKey include its simplified
deployment process, built-in support for various add-ons and components, and the ability to
manage the full lifecycle of clusters. However, it does have some limitations, such as being less
widely adopted in the community compared to kubeadm and having fewer troubleshooting
resources available.

Advantages:

XX

DATA ® ° Collaborative
§|NQW c on Administrative Data

e Automated installation of both Kubernetes and common add-ons
o Simplified cluster lifecycle management

e Includes built-in support for air-gapped (offline) environments.

o Easier integration with KubeSphere and related tools

e More streamlined upgrade process

Disadvantages:
¢ Smaller community compared to kubeadm
¢ Limited troubleshooting resources
e Less flexibility for customizing individual components
e KubeKey’s features are closely integrated with KubeSphere, potentially limiting its appeal
for standalone Kubernetes users.

A.9 Kubernetes cluster management platform

A.9.1 Rancher

Rancher is an enterprise-grade Kubernetes management platform that enables organizations to run
containers across multiple clusters. It provides a unified control plane for managing both on-premises and
cloud-based Kubernetes deployments.

A.9.2 KubeSphere

KubeSphere is a distributed operating system for cloud-native application management, providing a more
application-centric approach to cluster management. It emphasizes ease of use and includes features
specifically designed for DevOps workflows.

A.9.3 Lens

Lens is an advanced integrated development environment (IDE), and management interface specifically
designed for working with Kubernetes clusters. Unlike Rancher or KubeSphere which are installed in
Kubernetes cluster, Lens is installed in admin workstation that saves resources of the cluster. It provides a
sophisticated graphical user interface that simplifies cluster management and monitoring tasks.

Lens serves as a unified platform for developers and operators to manage multiple Kubernetes clusters
through a desktop application. It offers real-time cluster insights, resource management capabilities, and
integrated terminal access, making it significantly easier to interact with Kubernetes environments
compared to command-line tools alone.

Feature Rancher KubeSphere Lens

Type Full Kubernetes Kubernetes distribution & | Kubernetes IDE &
management platform | management platform management tool

Deployment Self-hosted (server- Self-hosted (runs on Desktop application
based) Kubernetes)

Interface Web-based Ul Web-based Ul Desktop application

Scope Multi-cluster Multi-cluster management | Multi-cluster
management management

XXi

DATA $ ° Collaborative
§| N’w o on Administrative Data
Feature Rancher KubeSphere Lens
Installation Moderate Moderate to high Low (desktop
Complexity installation)
Primary Use Case Enterprise Kubernetes | All-in-one platform with Developer & operator
management integrated tools workstation tool
Multi-Tenancy Strong Excellent (core feature) Limited
User Management Comprehensive Comprehensive Basic
Application Catalog | Yes (App Catalog) Yes (App Store) No
Observability Basic + integrations Comprehensive built-in Basic + extensions
Cl/CD Via integrations Built-in (DevOps Project) No
Service Mesh Via integrations Built-in (Istio) No
Cluster Provisioning | Strong (multiple Limited No (connects to
providers) existing)
Developer Good Good Excellent (core
Experience focus)
Operations Focus Strong Strong Moderate
Extensions/Plugins Yes Yes Yes (extensive)
Resource Moderate High Low (local only)
Requirements
Licensing Open Source (Apache Open Source (Apache 2.0) | Open Source +
2.0) Commercial

A.9.4 Alternatives

1. Portainer: Portainer is an open-source management Ul for Docker and Kubernetes. It provides a

simple and easy-to-use interface for managing containerized applications.

2. OpenShift Origin (OKD): OKD (OpenShift Origin) is the open-source upstream project of Red Hat
OpenShift. It provides a Kubernetes-based container platform with additional features for

application development and deployment.

A9.5

Lightweight Alternatives

1. K3s: K3sis a lightweight Kubernetes distribution designed for resource-constrained environments

and edge computing.

2. Minikube: Minikube is a tool for running a local Kubernetes cluster on your machine. It’s ideal for

development and testing purposes

3. MicroK8s: MicroK8s is a lightweight, single-node Kubernetes distribution developed by Canonical

(the creators of Ubuntu).

Conclusion

The choice between these alternatives depends on your specific needs:

e For Comprehensive Management: If you need extensive features and enterprise-grade capabilities,

tools like Rancher or OpenShift Origin (OKD) offer robust solutions.

e For Simplicity and Lightweight Environments: If you need a more lightweight or local development

solution, K3s, Minikube, or Microk8s might be more suitable.

XXii

DATA ® ° Collaborative
§|NQW c on Administrative Data

A.10 Minimum data lake technology stack for DatadNow deployment
checklist

Download checklist

Master Worker(s)

Workstation Node %completed

0%

1- Prerequisites

This section outlines the essential prerequisites for deploying the minimum Data lake infrastructure,
ensuring that all necessary configurations are in place. It details the collection of critical network and
system information, such as node IP addresses and repository links, to facilitate a structured deployment
process. The workstation setup includes the installation of essential tools and the configuration of
environment variables to maintain a standardized deployment environment. Furthermore, it provides step-
by-step instructions for downloading required binaries, setting up working directories, and configuring both
master and worker nodes.

1.1- Resource Allocation and Component Distribution [] pomE

1.2- Collect Essential Information [ponE

1.3- Workstation Setup

1.3.1- Install the Essential Tools: Git, Lens, Docker-

Desktop [1 nomE

1.3.2- Establishment of Working Directories [DonE

1.3.3- Configuration of Environment Variables (1 omE

1.3.4- Downloading Essential Binaries and Cloning the

Repository [] momE

1.4- Configuration on Master Node [1 pos=

1.5- Configuration on Worker Node [DonNE
2- Server Preparation 0%

This section outlines the necessary steps to prepare all nodes in the infrastructure for deployment. The
commands below ensure system updates, disable swap memory, and configure kernel parameters
essential for Kubernetes operations.

Server Preparation] Do [powE

3- Container runtime 0%
This section details the installation and configuration of the container runtime, which is a fundamental
requirement for Kubernetes nodes. The following steps ensure a reliable and efficient installation of Docker
and cri-dockerd.

Install docker and cri-docker [1 oo [o

4- Secure Shell (SSH) Access Configuration 0%
This section outlines the necessary steps to establish secure and password-less SSH access between the
master node and worker nodes. This setup facilitates seamless remote management and communication
between the nodes in a Kubernetes cluster.

4.1- Generating an SSH Key [1 pom=
4.2- Distributing the SSH Key] pomE
5- Install the Kubernetes Cluster 0%

xXiii

https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Minimum-DL-Installation-Checklist.xlsx

DATA ® ° Collaborative
§|NQW o on Administrative Data

Master Worker(s)
N° Steps Workstation Node Node
This section provides a structured approach to setting up a Kubernetes cluster, including installing
necessary dependencies, configuring the cluster, deploying it, and setting up a metrics server for
monitoring resource utilization.

%completed

5.1- Installation of Required Packages [1 nonE

5.2- Creating and Editing the Cluster Configuration [1 nos=

5.3- Deploying the Kubernetes Cluster] posE

5.4- Deploying the Metrics Component [1 Do

6- Install the Persistent Storage

0%

This section outlines the necessary steps to install and configure persistent storage using Longhorn. These
steps ensure that each node is equipped with the required dependencies, and that Longhorn is correctly
deployed and verified within the Kubernetes cluster.

6.1- Installation of Required Packages for Longhorn [1 Do

6.2- Installation of Longhorn [1 noom=

6.3- Verification of Longhorn Deployment [1 Do

7- Configuring Kubectl on the Workstation

0%

This section provides guidance on configuring ~ kubectl® on the workstation, ensuring connectivity with the
Kubernetes cluster. The process varies based on whether “kubectl® is newly installed or if an existing
configuration is present.

7.1- Configuration for a Newly Installed Kubectl

7.1.1- Download the kubernetes config file from the
cluster [] posE

7.1.2- Edit the Kubeconfig File [1 Dome

7.1.3- Verify the access to the cluster [ponE

7.2- Configuration If an Existing Cluster is Already Set
Up

7.2.1- Download the kubernetes config file from the
cluster [] nowne

7.2.2- Modifying the " new-config™ File 1 posE

7.2.3- Merge both the new and current config files] o=

7.2.4- Verify the access to the cluster (1 posE

8- Clean-Up Procedures

0%

This section provides guidance on securing the server environment by disabling root SSH login on all nodes,
including both master and worker nodes. Restricting root access enhances security and mitigates
unauthorized access risks.

8.1- Disabling Root SSH Login O Do] one

9- Deploy the Minimum Data lake

0%

This section outlines the step-by-step procedure for deploying the essential components of a data lake,
including MinlO for storage, JupyterHub for analytics, and Apache NiFi for data ingestion. The deployment is
performed from the workstation onto a Kubernetes cluster.

9.1- Deploy MinlO (storage)] oM
9.2- Deploy JupyterHub (analytics) [Do
9.3- Deploy Apache NiFi (ingestion) [] pone

XXiV

DATA ® ° Collaborative
§|NQW c on Administrative Data

A.11 Sample skill development recommendations for IT teams

Foundational skills:

e Linux system administration (Shell scripting, package management, user permissions, system
monitoring, etc.)

e Networking basics (IP addressing, DNS, firewalls, SSH, VPN, etc.)

e Version control (Git basics, branching, collaboration workflows, etc.)

Platform and infrastructure

o Docker & Kubernetes (Containerization, Helm charts, kubectl, cluster management, etc.)
e Storage Management (MinlO policies, S3 APIs, persistent volumes, Longhorn, etc.)
e Monitoring & Logging (basic alerting, Lens IDE, Rancher Academy, Prometheus, Grafana, etc.)

Data engineering and integration

e Apache NiFi (Flow design, processors, templates, scheduling, etc.)
e Dataformats and API (JSON, Parquet, ORC, data transfer protocols, etc.)
e ETL/ELT concepts (Data loading strategies, data cleaning, data transformation, etc.)

Data analysis and visualization

e JupyterHub & Notebooks (Python/R scripting, pandas, matplotlib, seaborn, etc.)
e Data Science Basics (Descriptive stats, basic ML, data storytelling, etc.)
e SQL & Trino (Querying structured/unstructured data, federated queries)

Security and governance

e |dentity & Access Management (Active Directory, LDAP, RBAC, etc.)
e Data Privacy & Protection (Encryption, anonymization, secure data sharing, etc.)
e Governance tools (metadata management, data cataloging, etc.)

More to be added.

XXV

DATA ® ° Collaborative
§|NQW c on Administrative Data

B. List of Abbreviations

e AD: Active Directory - A widely used proprietary identity and access management system that
reinforces security.

e Al Artificial Intelligence - Intelligence demonstrated by machines, as opposed to natural intelligence
displayed by humans.

e ANSD: Agence Nationale de la Statistique et de la Démographie - The National Statistical Office of
Senegal.

e API: Application Programming Interface - A set of rules that allows different software applications to
communicate with each other.

e AWS: Amazon Web Services - A cloud computing platform provided by Amazon.

e CAD: Collaborative on Administrative Data - A United Nations initiative focused on administrative
data use in official statistics.

e CKAN: Comprehensive Knowledge Archive Network - An open-source data portal platform.

e (CSV: Comma Separated Values - A simple, text-based format for storing tabular data.

e DA-13: Development Accounts 13 - A UN initiative focusing on data innovation and technology.

e DANE: Departamento Administrativo Nacional de Estadistica - The National Statistical Office of
Colombia.

e DDI: Data Documentation Initiative - A standard for capturing metadata about research and survey
data.

e ELT: Extract, Load, Transform - A data integration process where data is first extracted from sources,
loaded into a target system, and then transformed.

e ETL: Extract, Transform, Load - A traditional data integration process where data is first extracted
from sources, transformed to fit operational needs, and loaded into a target system.

e FOSS: Free and Open-Source Software - Software that can be used, studied, modified, and
distributed by anyone.

e FTP: File Transfer Protocol - A standard network protocol used for transferring files between a client
and server.

e GDPR: General Data Protection Regulation - A regulation in EU law on data protection and privacy.

e GIS: Geographic Information System - A system designed to capture, store, manipulate, analyze,
manage, and present spatial or geographic data.

e GSO: General Statistics Office - The National Statistical Office of Vietnam.

e HDFS: Hadoop Distributed File System - A distributed file system designed to run on commodity
hardware.

e HTTP: Hypertext Transfer Protocol - The foundation of data communication for the World Wide
Web.

e INE: Instituto Nacional de Estadistica - The National Statistical Office of Uruguay.

e INEGI: Instituto Nacional de Estadistica y Geografia - The National Statistical Office of Mexico.

e INS: Institut National de la Statistique - The National Statistical Office of Tunisia.

e JSON: JavaScript Object Notation - A lightweight data interchange format that is easy for humans to
read and write and easy for machines to parse and generate.

e k8s: Kubernetes - An open-source platform for automating deployment, scaling, and operations of
application containers.

XXVi

DATA ® ° Collaborative
§|NQW o on Administrative Data

e LDAP: Lightweight Directory Access Protocol - An open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services.

e LOD: Linked Open Data - A method of publishing structured data so that it can be interlinked and
become more useful through semantic queries.

e MBS: Maldives Bureau of Statistics - The National Statistical Office of Maldives.

e ML: Machine Learning - A subset of artificial intelligence that provides systems the ability to learn
from data and improve from experience.

e MOU: Memorandum of Understanding - A formal agreement between two or more parties.

o NSA: Namibia Statistics Agency - The former name of Namibia's National Statistical Office.

e NSO: National Statistical Office - Government agencies responsible for collecting, processing, and
publishing official statistics.

e NSS: National Statistical System - The entire network of institutions and entities involved in the
collection, processing, and dissemination of official statistics in a country.

e OAuth2: Open Authorization 2.0 - An industry-standard protocol for authorization.

e ORC: Optimized Row Columnar - A columnar storage format designed for high-performance
analytics.

e PBAC: Policy-Based Access Control - A method of managing user access to resources based on
policies.

e PDI: Pentaho Data Integration - A data integration tool that enables ETL from a variety of sources.

e PET: Privacy Enhancement Technologies - Technologies that help protect data privacy.

e PxWeb: A tool for disseminating statistical data on the web.

e QGIS: Quantum Geographic Information System - An open-source geographic information system.

e RBAC: Role-Based Access Control - A method of regulating access to computer or network resources
based on roles.

e S3:Simple Storage Service - Amazon's object storage service.

e SDMX: Statistical Data and Metadata eXchange - An international initiative to standardize and
modernize the exchange of statistical data and metadata.

e SFTP: Secure File Transfer Protocol - A network protocol that provides file access, file transfer, and
file management over any reliable data stream.

e SSL/TLS: Secure Sockets Layer/Transport Layer Security - Protocols for establishing authenticated
and encrypted links between networked computers.

e SSH: Secure Shell - A cryptographic network protocol for operating network services securely over an
unsecured network.

e Stats SL: Statistics Sierra Leone - The National Statistical Office of Sierra Leone.

e UNESCAP: United Nations Economic and Social Commission for Asia and the Pacific - A regional
commission that promotes economic and social development in the Asia-Pacific region.

e VPN: Virtual Private Network - A service that encrypts internet connections to protect online privacy.

e XML: eXtensible Markup Language - A markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable.

XXVii

	Executive Summary
	1 Introduction
	1.1 Background
	1.2 Goals and objectives
	1.3 Guiding principles for the modernization of IT architecture
	1.4 Reference architecture for data innovation

	2 Few components of open technology stack for data
	2.1 Overview
	2.2 Data ingestion/collection
	2.2.1 Few considerations:
	2.2.2 Data ingestion tools

	2.3 Data storage and management
	2.3.1 Few considerations in data lake storage:
	2.3.2 Data storage platforms:
	2.3.3 Data storage formats:
	2.3.4 Data organization strategy
	2.3.5 Data access management

	2.4 Data processing and analytics
	2.4.1 Few considerations:
	2.4.2 Data processing tools

	2.5 Data visualization and dissemination
	2.5.1 Few considerations from a data lake Perspective:
	2.5.2 Data visualization tools

	2.6 Security and Authorization
	2.6.1 Few considerations:

	2.7 DevOps and Containerization
	2.7.1 Kubernetes cluster
	2.7.2 Alternative Approaches

	3 Basic requirements for minimum data lake technology stack used in Data4Now
	3.1 Overview
	3.2 Skills requirements
	3.3 Platform
	3.3.1 On-Premises Infrastructure
	3.3.2 Cloud Infrastructure

	3.4 Operating system
	3.5 Hardware requirements
	3.5.1 Apache NiFi
	3.5.2 MinIO
	3.5.3 JupyterHub

	3.6 Sample use-case to estimate Hardware requirement

	4 Cases Studies
	5 Technical implementation guide for minimum data lake technology stack used in Data4Now
	5.1 Overview
	5.2 Checklist
	5.3 Deployment
	5.3.1 Prerequisites
	5.3.1.1 Resource Allocation and Component Distribution
	5.3.1.2 Collect Essential Information
	5.3.1.3 Workstation Setup
	5.3.1.3.1 Install the Essential Tools: Git, Lens, Docker-Desktop
	5.3.1.3.2 Establishment of Working Directories
	5.3.1.3.3 Configuration of Environment Variables
	5.3.1.3.4 Downloading Essential Binaries and Cloning the Repository

	5.3.1.4 Configuration on Master Node
	5.3.1.5 Configuration on Worker Node

	5.3.2 Server Preparation (All Nodes)
	5.3.3 Container Runtime Installation
	5.3.4 Secure Shell (SSH) Access Configuration
	5.3.4.1 Generating an SSH Key on the Master Node
	5.3.4.2 Distributing the SSH Key to Worker Nodes

	5.3.5 Installation of Kubernetes Cluster
	5.3.5.1 Installation of Required Packages
	5.3.5.2 Creating and Editing the Cluster Configuration
	5.3.5.3 Deploying the Kubernetes Cluster
	5.3.5.4 Deploying the Metrics Component

	5.3.6 Installation of Persistent Storage
	5.3.6.1 Installation of Required Packages for Longhorn
	5.3.6.2 Installation of Longhorn from the Master Node
	5.3.6.3 Verification of Longhorn Deployment

	5.3.7 Configuring Kubectl on the Workstation
	5.3.7.1 Configuration for a Newly Installed Kubectl
	5.3.7.1.1 Download the kubernetes config file from the cluster
	5.3.7.1.2 Edit/Modifying the Kubeconfig File
	5.3.7.1.3 Verify the access to the cluster

	5.3.7.2 Configuration When an Existing Cluster is Already Set Up
	5.3.7.2.1 Download the kubernetes config file from the cluster
	5.3.7.2.2 Modifying the new-config File
	5.3.7.2.3 Merge both the new and current config files
	5.3.7.2.4 Verify the access to the cluster

	5.3.8 Clean-Up Procedures
	5.3.8.1 Disabling Root SSH Login

	5.3.9 Deployment of the Minimum Data Lake Stack
	5.3.9.1 Deploy MinIO (Storage)
	5.3.9.2 Deploy JupyterHub (Analytics)
	5.3.9.3 Deploy Apache NiFi (Ingestion)

	5.3.10 Integrate Active Directory
	5.3.11 Using the tools

	A. Annexes
	A.1 Data4Now: IT Guiding Questionnaire
	A.2 Data ingestion tools
	A.2.1 Coding tools
	A.2.2 Low code Tools

	A.3 Data storage format
	A.3.1 Parquet

	A.4 Data Virtualization
	A.5 Data processing tools
	A.5.1 Collaboration Platform – JupyterHub (Server)
	A.5.2 Collaboration Platform - JupyterLab
	Geo-spatial analysis

	A.5.3 Framework - Apache spark
	A.5.4 Framework – Dask
	A.5.5 DuckDB
	A.5.6 Language - Python
	A.5.7 Language - R
	A.5.8 OpenRefine
	A.5.9 Geospatial - QGIS

	A.6 Data orchestration tools
	A.6.1 Dagster:
	A.6.2 Apache Airflow:

	A.7 Security and authorization
	A.7.1 Functionalities to consider in security
	A.7.2 Access Control
	A.7.3 Tools
	A.7.3.1 Active Directory
	A.7.3.2 OpenLDAP

	A.7.4 Active Directory Distinguished Name (DN)

	A.8 Kubernetes cluster
	A.8.1 Kubeadm
	A.8.2 KubeKey

	A.9 Kubernetes cluster management platform
	A.9.1 Rancher
	A.9.2 KubeSphere
	A.9.3 Lens
	A.9.4 Alternatives
	A.9.5 Lightweight Alternatives

	A.10 Minimum data lake technology stack for Data4Now deployment checklist
	A.11 Sample skill development recommendations for IT teams

	B. List of Abbreviations

