

2025

6/18/2025

Technical Document to Modernize IT
architecture in NSO/NSS using open-source

technology stack

a

ABOUT THIS DOCUMENT:

This document is meant to be a living document that will change along with changes in an ever-

evolving IT world. This document is developed by UN Statistics Division (UNSD) under the “Data For

Now” and the “Collaborative on the use of Administrative Data for statistics”. It consolidates

concepts and tools to provide a basis to assess feasibility for modernizing IT architecture to

incorporate new data sources at national statistical offices (NSOs) using free and open-source

technology stacks and to help implement practical deployment of select components of a minimum

data lake technology stack. We have tried to make this a practical document to support IT teams in

NSOs, keeping it short and to the point - with the potential risk that some information is omitted or

not researched well enough. Please note this space is fast evolving and therefore this document

should be used in conjunction with additional resources to meet your organizations’ needs.

While statistical processes such as data cleaning, modeling, anonymization, quality assurance,

standardization, and record linkage, along with statistical methodologies, are crucial components of

the statistics data lifecycle, they are not the focus of this document.

The views expressed in this wiki document are those of the authors and do not necessarily

represent the views of UNSD, the United Nations, or any of its affiliated organizations. For list of

any errors or omissions, please contact statistics@un.org.

ACKNOWLEDGEMENTS:

Document lead: Samrat Maskey

Document authors: Samrat Maskey, Thomas Aristide, Luis Gerardo Gonzalez Morales

Overall guidance: Luis Gerardo Gonzalez Morales, Sean Lovell, Vibeke Oestreich Nielsen, Faryal

Ahmed, Eric Aloysius Jacobus Johannes Deeben …

Content refined: Generative AI tools including ChatGPT, Microsoft Copilot, Claud

© 2025 United Nations

All rights reserved

Version: Draft 1

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/
mailto:statistics@un.org

b

Table of Contents
Executive Summary ... 1

1 Introduction .. 3

1.1 Background .. 3

1.2 Goals and objectives .. 6

1.3 Guiding principles for the modernization of IT architecture .. 6

1.4 Reference architecture for data innovation .. 7

2 Few components of open technology stack for data ... 12

2.1 Overview.. 12

2.2 Data ingestion/collection ... 13

2.3 Data storage and management ... 15

2.4 Data processing and analytics ... 20

2.5 Data visualization and dissemination ... 21

2.6 Security and Authorization ... 22

2.7 DevOps and Containerization ... 23

3 Basic requirements for minimum data lake technology stack used in Data4Now 25

3.1 Overview.. 25

3.2 Skills requirements .. 25

3.3 Platform ... 27

3.4 Operating system .. 27

3.5 Hardware requirements ... 28

3.6 Sample use-case to estimate Hardware requirement .. 31

4 Cases Studies ... 32

5 Technical implementation guide for minimum data lake technology stack used in Data4Now 33

5.1 Overview.. 33

5.2 Checklist .. 35

5.3 Deployment ... 36

A. Annexes ... i

A.1 Data4Now: IT Guiding Questionnaire.. i

A.2 Data ingestion tools.. iv

A.3 Data storage format .. v

A.4 Data Virtualization ... vi

A.5 Data processing tools ... vii

A.6 Data orchestration tools .. x

A.7 Security and authorization .. xi

c

A.8 Kubernetes cluster .. xix

A.9 Kubernetes cluster management platform ... xxi

A.10 Minimum data lake technology stack for Data4Now deployment checklist xxiii

A.11 Sample skill development recommendations for IT teams .. xxv

B. List of Abbreviations ... xxvi

List of Figures

Figure 1-1 Minimum data lake technology stack used in Data4Now .. 4
Figure 1-2 Unveiling modern IT architecture dimensions .. 5
Figure 1-3 Data For Now Guiding Principle ... 7
Figure 1-4 Unified data infrastructure architecture 2.0 - Andreessen Horowitz ... 8
Figure 1-5 Simplified reference data lake Architecture ... 9
Figure 2-1 Overview of select tools discussed in different components of the data value chain 12
Figure 2-2 Data ingestion considerations .. 13
Figure 2-3 Sample data buckets to organize data .. 19
Figure 5-1 Deployment of data platform - single node cluster ... 33
Figure 5-2 Deployment of data platform - multi-node cluster ... 34
Figure 5-3 Kubernetes Infrastructure Overview ... 35
Figure 5-4 Edit the kubeconfig file .. 45
Figure A-1 Active directory Advance feature ... xvii
Figure A-2 Active Directory Distinguished Name for User ... xviii

1

Executive Summary
This guide supports National Statistical Offices (NSOs) in modernizing their IT architecture using a

modular, open-source data lake technology stack. The framework was developed under the "Data

for Now" initiative along with experience shared through the “Collaborative on use of Admin Data

for statistics” to help NSOs integrate innovative data sources alongside traditional statistical data,

enabling the production of timely, disaggregated, and high-quality statistics for sustainable

development.

The Challenge

Today’s statistical offices are expected to do more than just run censuses and surveys. They need to

tap into new/existing data sources like admin data, mobile phone records, satellite images, social

media, and more to use them for statistics. To handle this volume, variety, and veracity (3V’s) of

data, NSOs need a modern, secure, and interoperable IT infrastructure that supports the efficient

processing, integration, and analysis of multiple data types.

Proposed Solution

The document outlines a modular, scalable data lake architecture built on Free and Open-Source

Software (FOSS) principles. The minimum technology stack used includes:

• Apache NiFi for data ingestion and pipeline management

• MinIO for secure, scalable object storage

• JupyterHub for collaborative data processing and analysis

• Trino for flexible data virtualization

• Kubernetes for container orchestration and scalability

• Active Directory (if already in use) integration with the tools for identity and access

management

Implementation Experience

The framework has been successfully tested and deployed across multiple NSOs including:

• Colombia (DANE) and Senegal (ANSD) - initial assessments and requirements identification

for data lake platform (DANE using Hadoop; ANSD using proposed open-source stack)

• Vietnam (GSO), Namibia (NSA), Tunisia (INS) - Kubernetes deployments

• Maldives (MBS) - direct server deployment of storage

Key Benefits

Technical Advantages

• Cost-effective: Prioritizes FOSS solutions while remaining open to complementary

proprietary tools

• Scalable: Architecture grows from single-node to multi-node clusters based on

organizational needs

• Flexible: Supports both structured and unstructured data formats

• Secure: Implements robust authentication, authorization, and encryption mechanisms

Organizational Impact

2

• Enhanced Data Processing: Improves efficiency through compressed storage formats like

Parquet, ORC, etc.

• Collaborative Environment: Enables cross-team collaboration through shared notebook

environments.

• Capacity Building: Strengthens in-house IT team capabilities for long-term sustainability.

Implementation Requirements

Infrastructure Specifications

Minimum hardware requirements scale based on concurrent users:

• Small deployment (5 users): 16 CPU cores, 32GB RAM, 500GB storage

• Medium deployment (25 users): 32 CPU cores, 128GB RAM, 1.5TB storage

• Large deployment (100 users): 128 CPU cores, 512GB RAM, 4TB storage

Essential Skills

• System administration (Linux/Ubuntu)

• Networking and security

• Infrastructure management and containerization

• Scripting and automation

• Data management and version control

Implementation Approach

A phased deployment strategy is recommended, allowing NSOs to gradually adopt components

based on priorities and capacity. The document provides:

• Current state assessment using “Data4Now: IT Guiding Questionnaire” (Annex) and identify

hardware, software, skillset requirements.

• Target architecture vision and verification if proposed IT architecture meets the needs.

• Detailed technical implementation guide with checklist.

• Skills development recommendations

• Good practices for data organization and access management

Future Considerations

As organizations mature, the architecture can incorporate additional components including:

• Data discovery and cataloging tools

• Advanced observability and monitoring

• Workflow management systems

• Artificial Intelligence and Machine Learning platforms

Conclusion

This IT modernization framework provides NSOs with a practical, tested approach to building

modern data infrastructure. By prioritizing open-source solutions, emphasizing capacity building,

and maintaining flexibility for future growth, the framework enables statistical offices to meet

evolving data demands while maintaining operational efficiency and data security. The successful

implementations across multiple countries demonstrate the framework's adaptability to diverse

organizational contexts and requirements.

3

1 Introduction

1.1 Background

In this modern data age, the role of statistical offices has evolved significantly with the rapid growth

of digital technologies and the emergence of innovative data sources. Modern IT infrastructure has

become essential for statistical offices to collect, process, analyze, and disseminate both traditional

(census, survey, etc.) and non-traditional (administrative data, earth observation, mobile phone,

social media, sensors, etc.) data, which usually come in different sizes and formats.

Guided by the ‘Data for Now’ initiative, we developed and tested a modular IT architecture based

on a minimum data lake technology stack, with the aim to support the implementation of a

platform (like data innovation lab) to process innovative data and methods to produce statistical

indicators. It is based on experience from technical implementation of the Data for Now initiative

(Data4Now) and Development Accounts 13 (DA-13) in different countries. The work has also

benefited from the discussions with partners in task-team 3 (Technical interoperability and linking)

of the Collaborative on administrative data (CAD), UN Global Platform and the UN Economic and

Social Commission for Asia and the Pacific (UNESCAP).

The work began under Data4Now initiative, which supports members of the National Statistical

Systems (NSS) in participating countries to leverage innovative sources, technologies and methods

for the streamlined production and dissemination of better, more timely and disaggregated data

for sustainable development. During initial assessments to support the NSOs of Colombia (DANE)

and Senegal (ANSD) on the technology front, both countries independently identified similar cross-

cutting IT requirements, including the need for a data lake platform capable of storing diverse set of

datasets irrespective of their maturity level and technology specification. In parallel, work on IT

Architecture workstream under CAD compiled use-case of deployed IT Architecture along with tools

and technology used for collecting administrative data in NSOs from Mexico (INEGI), Uruguay (INE),

Colombia (DANE), Norway (Statistics Norway), Namibia (NSA) helped understand actual IT

architectures implemented at different NSOs. Building on these findings, a data lake technology

stack was proposed to new Data4Now participating NSOs, with deployment platforms and

technology stacks tailored to their specific requirement. To facilitate this process, a ‘Data4Now: IT

Guiding Questionnaire’ was developed to Identify country-specific requirements and challenges,

particularly focusing on data flows within the technology landscape. This document, along with the

questionnaire provides a basis to assess feasibility for new NSO aspiring to deploy a data lake

architecture.

A key consideration in deploying this architecture is aligning it with the organizations’ IT strategic

roadmap and establishing a skilled IT team to manage the administrative and platform operations.

This architecture not only strengthens the data engineering capabilities of IT teams within NSO but

also provides a Data Innovation Lab with robust and flexible foundation for integrating innovative

data sources and advanced data science methods into the production of official statistics.

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/guiding-principle
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/teamTasks3
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-story-colombia
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-architecture-senegal
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/sLU7NTx5JYOBNsOQghEu
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/u6nongpgLoMqyxCWt17z
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/Wmuc94Ks8t5jxLvIZEWq
https://unstats.un.org/UNSDWebsite/capacity-development/admin-data/detailedView/jMqcomuN3RUagNKDZMGu

4

The proposed data lake configuration represents a minimum setup, designed to balance

deployment and management efforts while remaining open to integration of additional tools and

components based on specific needs. The select technology stack was initially implemented in NSO

of Senegal (ANSD) using Docker Compose and later using Kubernetes in NSOs of Viet Nam (GSO),

Namibia (NSA), and Tunisia (INS), offering enhanced scalability, maintainability, and resilience while

remaining adaptable to specific needs of each NSO. However, in the case of NSO of Maldives (MBS),

one of the components was deployed directly in the server. There were gradual enhancements in

the implementation platform from docker to Kubernetes to multi-node Kubernetes cluster to

manage additional resources.

To ensure sustainability, Free and Open-Source Software (FOSS) principle is prioritized for its cost-

effectiveness, adaptability, and flexibility to evolve with technological advancements. For instance,

Apache NiFi is used for data ingestion as it provides a visual platform to create data pipelines with

minimal manual coding. MinIO provides a secure, scalable, and efficient data storage platform that

enables storage of new and innovative data formats while being simple to deploy and maintain.

JupyterHub facilitates advanced data processing workflows through collaborative notebook

environments using python and R, and Trino supports flexible data virtualization. ‘Figure 1-1

Minimum data lake technology stack used in Data4Now’ highlights each stage of data flow and

respective technology stacks. We will explore each of these stages in coming sections.

FIGURE 1-1 MINIMUM DATA LAKE TECHNOLOGY STACK USED IN DATA4NOW

While FOSS forms the backbone of the architecture, proprietary solutions developed by private

vendors are not excluded when they align with specific needs. For example, Active Directory (AD),

a widely used proprietary identity and access management system, reinforces security for many

NSOs. They can choose to use existing AD with these tools and reduce the burden of having to

manage separate identity and access management systems. FOSS and proprietary solutions should

5

be seen as complementary, with their advantages and limitations carefully evaluated based on the

unique context and operational requirements of each NSO.

Brief overview of these tools and additional FOSS alternatives can be found in ‘Few components of

open technology stack for data’. ‘Basic requirements for minimum data lake technology stack used

in Data4Now’ outlines the platform (hardware, software) and skill-set requirements for deploying

and managing the selected minimum data lake technology stack. Finally, ‘Technical implementation

guide for minimum data lake technology stack used in Data4Now’ provides hands-on guidance for

deployment of the proposed architecture tested by Data4Now team.

Before moving to the next section, it is important to highlight that effective modernization extends

beyond technical infrastructure to encompass organizational workflows, stakeholder requirements,

and interdepartmental collaboration. Aligning the proposed architecture with an organization’s

overall IT strategy enhances data management, capacity building, governance, and long-term

scalability. This is also highlighted in the figure below.

FIGURE 1-2 UNVEILING MODERN IT ARCHITECTURE DIMENSIONS

Implementing mature and stable technologies with a focus on automation, reliability, and efficient

scaling is important and needs to be planned from the beginning. Continuous enhancement,

monitoring, and testing of these tools to integrate into the overall solution is essential to ensure

smooth transitions as we modernize our infrastructure.

6

1.2 Goals and objectives

The primary goal of this document is to support the modernization of IT architecture at NSO to

incorporate new data sources by providing information on the design and implementation of

modular, scalable, and resilient data lake architecture. This IT architecture is designed to integrate

innovative data sources supporting both structured and unstructured data formats while improving

data processing efficiency by utilizing storage formats that store compressed data. It also serves as

a data innovation lab to support implementing advanced data science methodologies, enabling the

production of timely, disaggregated, and high-quality data for sustainable development. Grounded

in the principles of sustainability, inclusivity, and innovation, the proposed architecture prioritizes

the use of FOSS while remaining open to complementary proprietary tools where necessary,

ensuring efficient processing, management, and dissemination of diverse data sources.

Specific Objectives:

1. Consolidate foundational knowledge: The document provides an overview of tools and

technologies in the data lifecycle, from data ingestion and storage to processing and

dissemination with a focus on using innovative data sources. It highlights the benefits and

limitations of few of these tools, offering practical insights to guide informed decision-

making.

2. Build institutional capacity: Emphasis is placed on fostering the skills and self-reliance of in-

house IT teams to manage and evolve these systems, ensuring long-term sustainability and

resilience. This document highlights hardware, software and skillset requirements needed

to deploy, manage, and use the modern IT architecture. It also documents the deployment

process of the minimum data lake technology stack so the IT team can follow the process

and evolve as needed.

3. Aligning with strategic goals: Document focuses on aligning IT systems with national

strategies, enhancing workflows, fostering interdepartmental collaboration, and addressing

global and national development priorities.

4. Incorporate lessons and good practices: Practical examples drawn from initiatives such as

Data4Now and DA-13 are provided to support scalable and context-specific

implementations for NSO, aligning with global efforts to promote innovation, efficiency, and

collaboration.

1.3 Guiding principles for the modernization of IT architecture

The following Data4Now principles guide IT modernization:

1. Sustainability: Leverage free and open-source technologies supported by active

communities for long-term viability and adaptability while reducing reliance on proprietary

solutions. Train IT staff on managing and using the deployed tools.

2. Holistic perspective: Adopt a comprehensive approach to IT modernization that promotes

innovation, integrating data workflows, tools, and processes to create a cohesive and

efficient statistical system.

7

3. Production-ready solutions: Implement robust and reliable open-source tools that are

capable of handling real-world workloads, ensuring scalability and operational efficiency.

4. Privacy and confidentiality: Ensure compliance with data protection standards to safeguard

sensitive information, enabling secure data analysis and sharing.

FIGURE 1-3 DATA FOR NOW GUIDING PRINCIPLE

1.4 Reference architecture for data innovation

The rapid evolution of IT architecture, driven by innovative data sources, technological

advancements, and changing organizational requirements, highlights the importance of establishing

a reference architecture for data innovation. Such architecture provides a strategic framework for

designing workflows that encompass data collection, storage, processing, analysis, and

dissemination. It promotes flexibility and scalability to address emerging challenges, such as

handling different formats of data along with the shift from traditional Extract, Transform, Load

(ETL) processes to more adaptive Extract, Load, Transform (ELT) models.1

The updated unified data infrastructure diagram (shown below) provides an overview of

organizational data flows and incorporates practical recommendations on tools and platforms

utilized by leading data organizations. While not all elements may be implemented at NSOs, the

framework offers an adaptable foundation for the modernization efforts, particularly within

initiatives like Data4Now. As it progresses, it could then incorporate Artificial Intelligence (AI) and

Machine Learning (ML) capabilities.

1 This perspective draws on insights from "Emerging Architectures for Modern Data Infrastructure," authored by
Matt Bornstein, Martin Casado, and Jennifer Li at Andreessen Horowitz. The authors provide an overview of trends
and best practices shaping modern data infrastructure.

8

FIGURE 1-4 UNIFIED DATA INFRASTRUCTURE ARCHITECTURE 2.0 - ANDREESSEN HOROWITZ

https://a16z.com/emerging-architectures-for-modern-data-infrastructure/

9

Core Architecture: The Data Lake

To support NSO, a simplified reference data lake architecture has been proposed below in ‘Figure

1-5 Simplified reference data lake Architecture’, comprising logical layers and technical landscape

focused on scalability and user-centric design. This framework prioritizes the integration of FOSS

while recognizing the importance of strengthening existing capabilities with proprietary tools where

necessary. While this architecture remains under development, specific attention is being directed

toward security and access control to ensure operational readiness.

FIGURE 1-5 SIMPLIFIED REFERENCE DATA LAKE ARCHITECTURE

“Figure 1-1 Minimum data lake technology stack used in Data4Now” serves as an example with

selected tools to design this data lake architecture while exploring customizations based on

organizations requirements. We will explore in following chapters some of the requirements to

deploy these tools including the importance of a strong IT team and practical deployment steps.

10

This architecture (Figure 1.4-2) divides the data lifecycle into five interconnected stages:

1. Data source

A "data source" can refer both to the original point of data generation and to the system where the

data is subsequently stored or made available. In the statistical context, "data source" often refers

to the instrument or system used to generate data. These sources include traditional statistical

instruments like censuses and sample surveys, as well as administrative records, business registers,

and non-traditional sources such as mobile phone data, Earth observation (satellite data), social

media, e-commerce records, remote sensor data, etc. In this document, we will classify data

sources based on the format in which the data is accessed, such as database connections, data files

or API connections, and frequently refer to the specific formats in which the data is serialized (e.g.,

JSON, XML, CSV, DAT, Parquet, etc.).

2. Data ingestion

Data ingestion is the process of importing, acquiring, or transferring data from various data sources

into a system where it can be processed and analyzed. It involves connecting to diverse sources of

data discussed above using the format in which the data is accessed. This may involve using APIs,

database connections, file uploads, or other methods and could use real time data using streaming

or schedule data upload using batch. Additionally, the data may come in various formats like JSON,

CSV, Parquet, etc. Some popular tools for data ingestion include Apache NiFi, Airflow, Pentaho PDI,

etc. along with code options like java, python script, etc.

3. Data storage

Data storage is the process of storing collected data in a secure and organized manner to allow for

efficient retrieval, management, and future use. Data stored should be capable of managing large

volumes of structured and unstructured data. The choice of storage depends on the data format,

volume, and accessibility requirements. Options include relational databases (e.g., MySQL,

PostgreSQL), NoSQL databases (e.g., MongoDB, Cassandra), or file-based systems like Hadoop

Distributed File System (HDFS) or MinIO. Even in file-based systems, large datasets can be stored in

compressed row or column-oriented storage like Parquet, ORC, etc. and further virtualized using

tools like Hive, Trino, Presto, etc.

4. Data processing

Data processing refers to the transformation of raw data into meaningful and usable forms for

analysis, modeling, or reporting. It often involves cleaning, validating, anonymizing, linking,

aggregating, or transforming data collected from various sources. Processing pipelines vary

depending on whether the data is structured, semi-structured, or unstructured. Common steps

include deduplication, missing data handling, integration from multiple sources, and harmonization

into standardized formats. Some of the common tools used include Python libraries (pandas,

NumPy, etc.), R, STATA, SPSS, Apache Spark, QGIS, etc.

5. Data dissemination

11

Data dissemination is the process of sharing processed data or statistical outputs with stakeholders,

end-users, or the public in a format that is interpretable, accessible, and actionable. Dissemination

ensures that the collected and processed data is available for decision-making, research, or public

use. This involves making datasets, dashboards, or reports available via platforms like websites,

APIs, interactive portals, or file distribution systems. Security and privacy considerations, such as

anonymizing sensitive data, are key to dissemination strategies. Apache superset, PowerBI, Looker

studio, Metabase, etc. are some of the popular dashboards and PxWeb, CKAN, GeoServer, etc. are

few among many of the dissemination tools.

Conclusion

Each phase of this reference architecture for data innovation is crucial to building a modern

statistical framework that ensures seamless data flow from sources to actionable insights or

dissemination. This approach enhances efficiency, adaptability, and relevance, supporting the

mandate of NSO to provide high-quality, timely, and reliable statistics for sustainable development.

In addition to this, there are components like data-discovery, observability, workflow manager,

AI/ML platform, etc. that should be integrated as the system becomes mature.

12

2 Few components of open technology stack for data

2.1 Overview

The open technology stack for data comprises a suite of open-source tools and open-standard

technologies designed to support the innovative data lifecycle, from collection and processing to

dissemination and reuse. It facilitates organizations to modernize their data infrastructure by

enhancing tool integration, promoting interoperability, and reducing reliance on proprietary

solutions thereby mitigating vendor lock-in. The modular design of the stack fosters sustainability,

strengthens local capacity, and ensures long-term viability for NSO.

A modern open technology stack for data aligns closely with the principles of Data4Now, which

emphasize open standards, modular design, and better integration. This alignment makes open

technology stack for data as an ideal technical foundation for implementing efficient,

interoperable, and scalable data infrastructure tailored to the unique requirements of NSO.

However, building a robust and effective open technology stack for data presents significant

challenges, particularly given vast and fragmented landscape of tools and technologies with

overlapping functionalities. In the below ‘Figure 2-1 Overview of select tools discussed in different

components of the data value chain’, we have grouped and highlighted few of these FOSS tools.

FIGURE 2-1 OVERVIEW OF SELECT TOOLS DISCUSSED IN DIFFERENT COMPONENTS OF THE DATA VALUE CHAIN

In the following sections, we will examine few select components along with tools shown in the

above figure, categorized according to their function within the data value chain.

Ingestion

•Apache NiFi

•Airbyte

•Pentaho PDI

•Python, R, Java

Storage

•MinIO (platform)

•HDFS (platform)

•Parquet (format)

•ORC (format)

•Trino (Virtualization)

•Presto (Virtualization)

Processing

•Jupiter Notebook (Python, R)

•JupiterHub (platform)

•Spark (Framework)

•Dask (Framework)

•DuckDB (inmemory processing)

•QGIS (Geospatial)

Dissemination

•Superset (Dashboard)

•Metabase (Dashnoard)

•CKAN (DMS)

•PxWeb (data publishing)

•GeoServer (geospatial)

Orchestration

•Airflow

•Dagster

Deployment

•Kubernetes k8s

•kubeadmin (deployment)

•Kubekey (deployment)

•Lens (Management)

•Rancher (Platform)

•Kubesphere (Platform)

13

2.2 Data ingestion/collection

Data ingestion is the process of importing, acquiring, or transferring data from various sources. This

data is then processed and analyzed within a system. It involves connecting to diverse sources of

data such as surveys, administrative records, or non-traditional data sources like mobile phone or

satellite data and retrieving the data. Few considerations for this layer, along with relevant tools,

are discussed below.

2.2.1 Few considerations:

The diagram below highlights few considerations for data collection.

FIGURE 2-2 DATA INGESTION CONSIDERATIONS

1. Data Sources: Identifying the sources from which the data will be collected is crucial. Some

examples of data sources are census, surveys, admin-data, citizen data, news and social

media, satellite, mobile phone data, e-commerce data, and more. Establishing

Memorandums of Understanding (MOUs) with data providers may be necessary to ensure

legal and ethical data sharing.

2. Data Format: Determining the types of data to collect is important, such as structured data

(e.g., tables, spreadsheets) or unstructured data (e.g., text, images, audio, video). For large

datasets, efficient formats like Parquet and OCR should be considered. For statistical data,

14

SDMX (Statistical Data and Metadata eXchange) format is recommended for data exchange

along with DDI (the Data Documentation Initiative) for capturing metadata.

3. Connection Type: Defining how data will be shared is equally important. Common

connection types include sFTP, database connections, data APIs, application APIs, web

upload, email, and HTTP (web scraping).

4. Frequency: Determining how often data is collected, is important. Data may be received

daily, weekly, monthly, quarterly, annually, or as a one-time process.

a. Batch Processing: Data is collected, processed, and delivered in predefined batches

at scheduled intervals. This is suitable for handling large volumes of data and

performing resource-intensive operations.

b. Real-time Streaming: Data is continuously ingested and processed as it arrives. This

is vital for applications requiring real-time analytics or monitoring, such as disaster

response.

5. Data Security: Implementing security measures is vital to protect the data during collection,

transmission, and storage. It includes encryption protocols (e.g., SSL/TLS with HTTPS, SFTP,

SSH) encrypted tunnels (e.g. VPNs) and an identity verification system to prevent

unauthorized access.

6. Data Validation: Establishing validation processes to ensure data integrity and accuracy is

crucial to avoid errors and inaccuracies.

2.2.2 Data ingestion tools

In the context of data ingestion, low-code tools and traditional coding languages play important

roles in simplifying the process of moving and processing data from various sources into a data

pipeline.

Low-code tools: These platforms enable users to create data pipelines and workflows with minimal

manual coding. They provide visual interfaces and pre-built components, making it easier to design,

configure, and automate processes. Low-code tools are particularly useful for users without

extensive programming knowledge but those who need to manage data workflows effectively.

Examples of FOSS tools used by various NSO for data ingestion include:

1. Apache NiFi: A user-friendly tool for real-time and batch data flows, offering flexible

connectors and transformations.

2. Airbyte: A modern ELT platform with an extensive library of prebuilt connectors.

3. Pentaho PDI: A data integration tool that enables ETL from a variety of sources.

A quick comparison of few of these tools is shown in the table below:

Feature Apache NiFi Pentaho PDI Airbyte
License Open Source (Apache) Commercial (Enterprise) /

Open Source (Community)
Open Source (MIT)

UI Experience Web-based flow
designer with drag and
drop

Desktop application with
drag and drop

Web-based
configuration UI

https://sdmx.org/about-sdmx/welcome/
https://nifi.apache.org/
https://airbyte.com/

15

Feature Apache NiFi Pentaho PDI Airbyte
Learning Curve Moderate to steep Moderate Low
Connectors/Sources 300+ processors 100+ 300+ connectors
Transformation
Capabilities

Moderate Excellent Limited (relies on
destination)

Scalability Highly scalable Good Good
Scheduling Built-in Built-in Built-in
Cloud Support Yes Yes Yes (cloud-native)
Community Activity Very active Moderate Very active

Custom code: Writing custom code provides greater flexibility and customization for data ingestion

processes. While it requires technical expertise, it allows for tailored solutions to meet specific

requirements. Common languages used for data ingestion include:

1. Custom Python/R Scripts: Flexible and widely used for bespoke data process.

2. Custom Java/C#/etc.: Suitable for building custom data ingestion pipelines with high

performance and scalability.

Additionally, a use case for Apache NiFi will be published separately to demonstrate how countries

can implement this tool effectively.

2.3 Data storage and management

Data storage refers to the system and processes used to store data collected from various sources

or generated through analytical processes, either in raw or aggregated formats. It involves the

organization, management, and retrieval of data assets to support various applications and

services. Selecting an appropriate storage mechanism is an important aspect of modern IT

architecture design and operation. Mature data architecture includes data-warehouses alongside

supporting data lake or data lake house architecture.

Data warehouses: Data warehouses store well-organized, transformed data with predefined

schemas, ensuring quality and consistency through ETL processes. They use star or snowflake

schemas, organizing data into dimensions and fact tables for efficient querying and analysis.

Data lakes: Data lakes store diverse, raw data without strict structuring, providing flexibility for

various data types. Key characteristics include:

• As-is data ingestion promoting schema-on-read.

• Support for both structured, semi-structured, and unstructured data

• Scalability and adaptability for evolving analytical needs.

• Capability for exploratory analysis and advanced analytics.

Given the focus on innovative use of new and existing data, this section emphasizes data lake

architecture. However, the choice of architecture depends on the specific needs of NSO. The

16

modular design allows for flexibility and scalability. Proper data storage and access management

practices are essential to ensure data security, privacy, and efficient processing. Below are few

considerations, tools and strategies for data lake storage.

2.3.1 Few considerations in data lake storage:

1. Storage platform: Modern data lake typically uses traditional distributed file systems (e.g.,

Hadoop HDFS) or object storage systems (MinIO, Amazon S3, Azure Blob Storage, Google

Cloud Storage, etc.). These platforms provide scalable, durable, and cost-effective storage

for large volumes of data.

2. Storage format: Data can be stored in efficient formats like Parquet, AVRO, ORC, etc. which

offer row- or column-oriented storage with compression and encryption. These formats

save storage space and reduce access/load time compared to traditional data formats like

CSV, JSON, SPSS, etc.

3. Data access management: Data lake can implement Role-Base Access Control (RBAC) or

Policy-Based Access Control (PBAC) to manage access at different level. Fine-grained control

can also be applied at the object level.

4. Data organization strategy: Data in the data lake can be organized in buckets using

medallion architecture like [e.g., Raw, Anonymized/Bronze, Staged/Silver, Aggregate/Gold,

etc.] and partitioned by meaningful attributes (e.g. year, location, or category, etc.) to

improve query performance and usability.

2.3.2 Data storage platforms:

Modern data storage technologies for data lakes include a variety of tools and platforms that

leverage advancements in cloud computing, distributed computing, and big data processing. These

technologies aim to provide scalable, efficient, and cost-effective solutions for storing and

managing data within a data lake. Here are some of the prominent data lake platforms that support

on-premises deployment:

Distributed File System in data lake: Systems like Hadoop Distributed File System (HDFS) store and

manage vast amounts of data across interconnected nodes. They are well-suited for batch-oriented

processing and analytics, offering high throughput and fault tolerance. Many early adopters of big

data technology use Hadoop ecosystems including DANE-Colombia. They could be costly to manage

in terms of resource utilization.

Object storage: Platforms like MinIO, Amazon S3, and Azure Blob Storage store data as objects

within containers, each with a unique identifier and metadata. Object storage is ideal for

unstructured data and offers scalability, durability, and cost-effectiveness. Many new

implementations include Object storage solution.

A quick comparison of few of these platforms is shown in the table below:

Feature MinIO Hadoop HDFS

Architecture Object storage system Distributed file system

https://hadoop.apache.org/
https://min.io/

17

Feature MinIO Hadoop HDFS

API Compatibility Amazon S3 compatible HDFS API

Data Structure Object-based Block-based

Deployment Lightweight, container-friendly Heavyweight, cluster-oriented

Scalability Horizontal, containerized Horizontal, requires name node

planning

Performance High throughput, optimized for

small/large files

Optimized for large files, slower for

small files

Fault Tolerance Erasure coding, distributed design Replication-based

Cloud-Readiness Cloud-native design Originally designed for on-premises

Complexity Simple setup and maintenance Complex setup and operational

overhead

Ecosystem

Integration

Works with S3-compatible tools Native integration with Hadoop

ecosystem

Use Cases Modern cloud applications,

microservices

Traditional big data processing

(Hadoop ecosystem)

Security IAM, encryption, RBAC Kerberos, ACLs

Consistency Model Strong consistency Eventually consistent

License Open source (AGPLv3) Open source (Apache)

In the annex section “Data ingestion tools” you can see an example of python script that ingest data

from an ftp server to and MinIO.

2.3.3 Data storage formats:

Modern data lake architectures support various storage formats to accommodate diverse data

types and analytical needs. Some common formats include:

1. Parquet: A columnar storage format optimized for analytics offering efficient compression

and encoding. Many countries have seen file size reduction of almost 90% when using

Parquet with Snappy compression. See Annex ‘Parquet’

2. ORC (Optimized Row Columnar): A columnar storage format designed for high-performance

analytics with features like predicate pushdown and lightweight compression.

3. Avro: A compact and efficient binary format supporting schema evolution and rich data

types. Ideal for data serialization and exchange.

4. JSON (JavaScript Object Notation): A human-readable format for semi-structured and

unstructured data.

5. CSV (Comma Separated Values): A simple, text-based format widely used for tabular data.

While less efficient than columnar formats for analytics, CSV remains versatile and easy to

work with.

A quick comparison of few of these formats is shown in the table below:

18

Feature Parquet ORC Avro CSV
Type Columnar Columnar Row-based Row-based
Development Apache (originally

Cloudera/Twitter)
Apache
(originally
Hortonworks)

Apache N/A (standard
format)

Compression Excellent (built-in) Excellent (built-
in)

Good Poor (requires
external
compression)

Schema
Support

Self-describing Self-describing Self-describing No schema

Schema
Evolution

Limited Limited Excellent N/A

Query
Performance

Excellent for
analytical queries

Excellent for
analytical
queries

Good for
record
processing

Poor for large
datasets

Write
Performance

Moderate Moderate Fast Very fast

Ecosystem
Support

Hadoop, Spark,
Presto, Athena,
Snowflake

Hadoop, Hive,
Spark, Presto

Hadoop, Kafka,
Spark

Universal

File Size Small (highly
compressed)

Smallest (highly
optimized)

Medium Large
(uncompressed)

Random
Access

Good Good Limited Poor

Best For Analytics, data
warehousing

Hive/ORC
optimized
analytics

Data
serialization,
streaming

Simple data
exchange, small
datasets

Storage
Efficiency

Very high Very high High Low

Processing
Overhead

Medium Medium Low Very low

2.3.4 Data organization strategy

Effective data organization in a data lake is essential to ensure data discoverability, accessibility,

and usability for various data consumers. Here are some good practices for data organization on a

data lake:

1. Hierarchical structure: Organize data using a hierarchical folder structure based on

categories, domains, or data sources, etc. partition data based on attributes like date,

location, or type to improve query performance.

2. Data catalog (Metadata): Implement a data catalog to serves as a central repository for

metadata, data definitions, and data lineage.

3. Data versioning and lifecycle management: Track changes to datasets and manage

retention policies using tools like MinIO or Apache Atlas.

19

4. Logical data model: Define a logical data model to guide data organization and

categorization. Consider frameworks like Linked Open Data (LOD) or SDMX for

interoperability.

FIGURE 2-3 SAMPLE DATA BUCKETS TO ORGANIZE DATA

While implementing in various NSO under Data4Now initiative, below suggested folders/buckets

are created enhancing the medallion architecture:

1. Raw: Contains unprocessed data from surveys, administrative records, and external sources.

2. Anonymized: Contains data anonymization using privacy enhancement technologies (PET).

3. Staging: Holds cleaned, validated, and standardized data.

4. Aggregate/Gold: Contains finalized statistical reports, indicators, and insights.

5. Archive: Stores historical data for trend analysis and research.

2.3.5 Data access management

Effective data access management safeguards sensitive data, prevents unauthorized access, and

ensures compliance with data protection regulations. Key practices include:

1. Policy-Based Access Control (PBAC): Assign permissions based on user roles and

responsibilities.

2. Least Privilege Principle: Grant users the minimum access required for their tasks.

3. Data Classification: Classify data by sensitivity and apply appropriate access controls.

These are just few points in data access management. NSO may need to define more custom access

management strategy based on their need.

20

2.4 Data processing and analytics

Data processing involves cleaning, modeling, or linking datasets to prepare them for analysis. This

process uses standard or innovative methodologies to produce meaningful statistics and indicators.

The results are then stored or published in reports or dashboards. This is where business logic is

implemented along with data quality rules. Data processing tools are hence one of the most

integral parts of IT architecture from a statistical perspective. It can play a crucial role in facilitating

collaboration among different teams within data architecture. Few considerations to make in this

layer along with tools are discussed in below sections.

2.4.1 Few considerations:

1. Flexible data access: Platforms that can easily integrate with existing architecture and

provide directly access data are essential. This allows statisticians, data engineers, and data

scientists to work with the same datasets, eliminates data silos and ensures consistency in

data usage.

2. Reproducibility: the ability to reproduce analyses and experiments easily by rerunning

processes without external interference is critical. This is crucial for validation of results and

the accuracy of analysis over time.

3. Interactive environment: An interactive environment where users can write and execute

code, visualize data, and create explanatory narratives all in one place is equally important.

Such environment fosters collaboration, enabling teams to share insights, code, and

documentation effectively.

4. Collaboration tool: Platforms that allow teams to create notebooks containing code

snippets, scripts, and data analysis procedures promote transparency and collaboration.

Statisticians, data engineers, and data scientists can share their work, enabling team

members to understand and contribute to each other’s analyses.

5. Visualization and Documentation: Integrating code execution with rich visualizations and

text enables teams to present their findings comprehensively. Statisticians can explain

methodologies, data engineers can document transformations, and data scientists can

highlight model results within a single document.

6. Extension Capabilities: Support to various programming languages and libraries like Python,

R, etc. makes it adaptable to different team members' expertise and needs.

Providing a common platform to perform data modeling and analysis brings various teams together

while providing security, consistency and efficiency.

2.4.2 Data processing tools

Several tools are widely used for data processing and analytics, each offering unique capabilities to

support statistical workflows:

1. JupyterHub/JupyterLab: Enables collaborative, notebook-based exploration and analysis.

2. Apache Spark: Handles large-scale data processing with APIs for Python, Java, and Scala,

making it suitable for distributed computing.

21

3. Dask: Facilitates scalable computation for Python-based workflows, particularly for parallel

processing.

4. SQL Engines (e.g., Trino): Provide high-performance querying for both structured and semi-

structured datasets

5. QGIS: A geographic information system (GIS) tool that allows users to view, edit, analyze, and

publish spatial data.

Advantages, disadvantages, and use cases for some of these tools are further detailed in Annex

Section 5.7 “Data processing tools”.

2.5 Data visualization and dissemination

Data visualization involves representing data in graphical or visual formats, such as charts, graphs,

dashboards, or interactive maps. These tools help users explore patterns, trends, and insights

effectively. Visualization helps communicate complex data intuitively and can drive decision-making

in organizations.

Data Dissemination involves making processed and analyzed data accessible to the intended

audience through various means like APIs, data portals, downloadable datasets, or reports.

Effective dissemination ensures data is accessible, reusable, and easy to understand for target

users, such as analysts, policymakers, or the public.

2.5.1 Few considerations from a data lake Perspective:

o Integration: Visualization and dissemination tools should be integrated seamlessly with the

data lake to fetch real-time or batch-processed data. Technologies like APIs or connectors

facilitate this.

o Scalability: Systems should be designed to handle large volumes of data flowing in from the

data lake, accommodating concurrent queries or visualizations.

o Accessibility: Dashboards and visualizations should be intuitive and user-friendly.

o Data Governance: Appropriate access control, anonymization, and security measures are

important factors that should be in place when sharing or visualizing data.

o Formats and Standards: Disseminated data should comply with open standards (e.g., JSON,

CSV, XML, SDMX) to enable interoperability and reuse.

o User-Centric Design: Tailor visualization tools and dissemination methods to meet diverse

user needs, offering both high-level summaries and granular data.

2.5.2 Data visualization tools

Apache Superset: A modern, open-source data exploration and visualization platform. It provides

an intuitive interface for building dashboards and exploring data from various sources, including

relational databases and data lakes. It supports a wide range of data connectors and is designed to

make data exploration and visualization accessible to users of all skill levels.

22

Metabase: A user-friendly analytics and dashboard creation platform that simplifies data

exploration and visualization. It is designed to be accessible to non-technical users while offering

advanced features for data analysts.

A quick comparison of few of these platforms is shown in the table below:

Feature Apache Superset Metabase

Primary Focus Enterprise-grade data exploration

and visualization

User-friendly analytics and

dashboarding

License Open Source (Apache) Open Source (AGPL) with

commercial options

Target Users Data analysts, scientists, engineers Business users, analysts (less

technical focus)

Learning Curve Moderate to steep Low (designed for ease of use)

SQL Knowledge

Required

Yes (for advanced features) Optional (has SQL and no-code

options)

Visualization

Options

Extensive (100+ chart types) Good (fewer options but covers

essentials)

Data Source

Connectors

40+ databases and SQL engines 20+ databases and SQL engines

Dashboarding Advanced with complex layouts Simplified but effective

Data Exploration Excellent (core strength) Good

Self-service Analytics Moderate Excellent (core strength)

Embedding Supported Supported (premium feature in

paid plans)

Alerting Basic More comprehensive

Community Size Large, active Large, active

Best Use Case Complex data analysis, extensive

visualization needs

Quick insights, business user

adoption

Enterprise Features Through community plugins Through paid plans

Governance &

Security

Strong Basic in open source, stronger in

paid version

2.6 Security and Authorization

Entitlements and security are among the most important components of modern IT architecture.

They serve as cross cutting elements that support the overall governance of the infrastructure.

Properly implemented, they enable secure access to resources while safeguarding sensitive

information, ensuring data privacy, and maintaining compliance with relevant regulations.

23

Balancing the need to make data available to more users with the requirements of security and

compliance can be challenging. However, several approaches can help achieve this balance. Few

considerations to make in this layer along with tools are discussed in below sections with focus on

access control.

2.6.1 Few considerations:

1. Authentication: Implement robust identity management systems (e.g., LDAP, OAuth2) to verify

the identity of users and services.

2. Authorization: Use role-based access control (RBAC) or policy-based access control (PBAC) to

define and enforce permissions effectively.

3. Encryption: Ensure data is encrypt both at rest (e.g., AES-256) and in transit (e.g., TLS/SSL).

4. Auditing and monitoring: Continuously monitor access logs and employ anomaly detection

mechanisms to identify potential security breaches.

5. Compliance: Adhere to relevant data protection regulations, such as General Data Protection

Regulation (GDPR), or applicable national frameworks.

Functionalities, Advantages, disadvantages, and use cases for security are further detailed in Annex

“Security and authorization”.

2.7 DevOps and Containerization

DevOps practices integrate software development and IT operations, enabling faster and more

reliable updates to systems and applications. Containerization encapsulates applications along with

their dependencies, ensuring consistent deployment across diverse environments. Below are some

tools and approaches to consider for implementing DevOps and containerization:

2.7.1 Kubernetes cluster

A Kubernetes cluster is a production-grade container orchestration platform that automates the

deployment, scaling, and management of containerized applications.

However, using a Kubernetes cluster is not mandatory for deploying data platforms or other

infrastructure components. The decision to adopt Kubernetes should be based on your

organization’s specific requirements, goals, and operational capacity. For a detailed breakdown of

the advantages and disadvantages of Kubernetes, tools for deployment and management, and

recommendations on when to use it, refer to Annex “Kubernetes cluster”.

2.7.2 Alternative Approaches

1 Virtual Machines or Bare Metal: For straightforward deployments, traditional virtual

machines(VMs) or bare metal servers may be sufficient and easy to manage.

2 Docker Swarm: Offers a simpler learning curve and native Docker integration but has

limited scalability compared to Kubernetes. It is best suited for smaller deployments.

24

3 Managed Container Services: Consider using managed Kubernetes services (e.g., Amazon

EKS, Azure AKS, Google GKE) to reduce operational overhead while leveraging from

Kubernetes features.

4 Platform-as-a-Service (PaaS): For simpler applications, PaaS offerings like Heroku, AWS

Elastic Beanstalk, or Google App Engine can provide easier deployment and management

without needing to manage Kubernetes.

Kubernetes provides significant benefits for managing complex, containerized applications but

introduces added complexity and costs. The decision to use Kubernetes should be guided by your

specific use case, application complexity, and operational capacity. For simpler deployments or

organizations new to container orchestration, alternative approaches or managed services may

offer a more practical starting point. Conversely, for large-scale, complex applications requiring

advanced orchestration and automation, Kubernetes can provide powerful scalable solutions.

When evaluating options, consider the features, resource requirements, and complexity of each

approach to determine the best fits for your use case and deployment environment.

25

3 Basic requirements for minimum data lake technology

stack used in Data4Now

3.1 Overview

Based on the platform where the technology stack is deployed, technology stack, volume/variety of

the data, new and innovative methodology implementation including machine learning algorithms

will influence the hardware and technical skill requirements for the infrastructure. We will briefly

discuss some of the requirements to deploy ‘Figure 1-1 Minimum data lake technology stack used

in Data4Now’ in this section.

3.2 Skills requirements

Proposed minimum data lake technology stack may require a diverse set of skills to deploy and

manage it. Few of them include:

• System Administration: Operating system administration (Linux) to set up and manage

server environments along with Package management, user management, security

configurations, and system monitoring.

• Infrastructure Management: Proficiency in managing and configuring server hardware,

networking, and storage devices. Knowledge of virtualization and containerization

technologies (e.g., Docker, Kubernetes). Ability to provision and manage virtual machines,

containers, and storage resources using Infrastructure as Code approach.

• Networking and Security: Knowledge of network architecture, including routing, load

balancing, and firewall configuration. Security best practices, including user access control,

encryption, and authentication mechanisms.

• Scripting and Automation: Proficiency in scripting languages like Python or Bash for

automating routine tasks.

• Version Control System: Version Control System GIT is a critical tool used to manage

changes to source code and other files in the repository.

• Problem Solving and Troubleshooting: Strong analytical and problem-solving skills to

diagnose issues and implement solutions. Effective troubleshooting and debugging of IT

problems.

• Data Management: Knowledge of setting up and managing databases or object storage

solutions like MinIO. Understanding data redundancy, durability, and backup strategies

The following table summarizes the key tools in the stack and the corresponding skills required to

deploy and manage them effectively:

26

Tool /

Component

Primary

Function

Required Skills Skill Level Notes

Apache NiFi Data ingestion

& flow

orchestration

Data pipeline design

XML/JSON handling

Network protocols (FTP,

API)

NiFi UI & processors

Intermediate Visual interface

reduces coding

needs; scripting

optional

MinIO Object storage Linux system admin

S3 API familiarity

IAM policy configuration

Storage architecture

Intermediate Similar to AWS S3;

integrates with

AD/LDAP

JupyterHub Collaborative

data analysis

Python/R scripting

Package management

(pip, conda)

JupyterLab extensions

User management

Intermediate

to Advanced

Useful for

statisticians and

data scientists

Trino

(PrestoSQL)

Data

virtualization &

querying

SQL (advanced)

Schema design

Connector configuration

Query optimization

Advanced Useful for

federated queries

across MinIO, DBs

Kubernetes Container

orchestration

Cluster setup &

management

Helm charts

kubectl CLI

Networking & volumes

Advanced Optional for small

deployments;

essential for

scaling

Active

Directory (AD)

Identity &

access

management

LDAP/AD integration

RBAC/ABAC concepts

Security policies

Intermediate Can be integrated

with NiFi, MinIO,

JupyterHub

Helm Kubernetes

package

manager

Helm CLI

YAML templating

Chart customization

Intermediate Used for

deploying NiFi,

JupyterHub, etc.

Git Version control Git CLI

Branching & merging

Repo management

Basic to

Intermediate

Essential for

managing

deployment

scripts

Linux

(Ubuntu)

OS for all

components

Shell scripting

Package management

(apt)

System monitoring

Intermediate Base OS for all

deployments

Python / R Data

processing

Data wrangling (pandas,

dplyr)

Visualization

Statistical modeling

Intermediate

to Advanced

Used within

JupyterHub

notebooks

Longhorn Persistent

storage for

Kubernetes

Kubernetes storage

concepts

iSCSI/NFS setup

Helm deployment

Intermediate Optional but

recommended for

resilience

27

3.3 Platform

There are several factors to consider when deciding where the platform will be hosted. Few of

them include budget, security requirements, scalability needs, and technical expertise. Below we

try to highlight some of the options.

3.3.1 On-Premises Infrastructure

On-premises solutions are physically located at an organization’s site or in a hosting location. The

hardware, applications, and all the data are stored on servers or a private cloud where it is

protected with a firewall at that location. Although it provides full control over hardware, software,

and data, it has high initial investment cost along with recurring maintenance and disaster recovery

cost associated with it.

For reasons of security and data sovereignty, many NSOs have opted to host on-premises model,

while some have used cloud solution hosted within their territory as required by their law.

3.3.2 Cloud Infrastructure

When talking about cloud infrastructure, we will be focusing on IaaS (Infrastructure as a Service) to

implement IT Architecture. Having said that there also exists PaaS (Platform as a Service) and SaaS

(Software as a Service) within cloud services and should be considered as needed.

IaaS is renting third-party hardware or virtualized computer resources including storage and

networking over the internet. We decide and manage the platform, operating system, technology

stack, development tools, and configuration of the system. Some of the popular IaaS providers

include Azure, AWS, GCP, Digital-Ocean, Local telecom operator, etc.

This option eliminates large initial investment costs but could incur data transfer costs and

dependency on internet.

The choice between on-premises and cloud infrastructure is dependent upon several factors,

including financial resources, security considerations, scalability requirements, and the technical

capacity available within the organization. Many enterprises opt for a hybrid approach, integrating

on-premises and cloud-based solutions to leverage the advantages of both. However, managing a

hybrid infrastructure presents certain challenges, including the seamless integration of on-premises

and cloud components, ensuring robust security across both environments, and enhancing the

capacity of IT personnel to operate effectively within a diverse technological landscape.

3.4 Operating system

We have used Ubuntu 24.04 OS as a base to configure the minimum data lake technology stack

used in Data4Now setting.

28

3.5 Hardware requirements

The hardware requirements for the infrastructure are dependent on the size and complexity of the

data, as well as the methodological requirements for generating various statistical outputs. These

may range from basic data processing to geospatial analysis and machine learning approaches,

while also considering the necessity for concurrent and parallel processing. It is essential to account

for the scalability and growth potential of the data platform when defining the hardware

infrastructure.

It should be noted that all recommendations regarding the number of processing cores refer to

logical cores rather than physical cores. Logical cores represent the number of CPU threads

recognized and utilized by the operating system.

Furthermore, hardware recommendations have been generalized to provide flexible guidance

across different deployment scenarios. A simplified reference table is provided below, which

presents indicative hardware resource allocations based on user concurrency per component. It is

important to emphasize that these recommendations serve as general guidelines and should be

tailored to the specific use case, considering performance evaluations and operational

requirements.

Hardware needs vary by user concurrency and data volume. Below are indicative specifications:

Concurrent
Users

CPU Cores (Per
Component as
applicable)

RAM (Per
Component as
applicable)

Disk (Per
Component as
applicable)

Network
Bandwidth

1 Minimum: 2 cores

Recommended: 4
cores

Minimum: 4 GB

Recommended: 8
GB

Minimum: 100 GB

Recommended: 200
GB

Gigabit
Ethernet

5 Minimum: 4 cores

Recommended: 8
cores

Minimum: 8 GB

Recommended: 16
GB

Minimum: 150 GB

Recommended: 400
GB

Gigabit
Ethernet

10 Minimum: 8 cores

Recommended: 8+
cores

Minimum: 16 GB

Recommended: 32
GB

Minimum: 200 GB

Recommended: 800
GB

Gigabit
Ethernet

25 Minimum: 8+ cores

Recommended: 16
cores

Minimum: 32 GB

Recommended: 64
GB

Minimum: 300 GB

Recommended: 1.5
TB

10 Gigabit
Ethernet

29

Concurrent
Users

CPU Cores (Per
Component as
applicable)

RAM (Per
Component as
applicable)

Disk (Per
Component as
applicable)

Network
Bandwidth

50 Minimum: 16 cores

Recommended: 32
cores

Minimum: 64 GB

Recommended: 128
GB

Minimum: 500 GB

Recommended: 2.5
TB

10 Gigabit
Ethernet

100 Minimum: 32 cores

Recommended: 64
cores

Minimum: 128 GB

Recommended: 256
GB

Minimum: 1 TB

Recommended: 4 TB

10 Gigabit
Ethernet

3.5.1 Apache NiFi

A minimum cluster configuration requires at least two nodes. (Additional reference: Apache NiFi

System Requirement)

Example minimum node

Node CPU Memory Storage

Coordinator/Primary/Zookeeper \>2 cores \> 4 GB \> 10 GB

 Additional considerations:

Memory: Tool’s performance benefits from having enough memory to manage data flows

efficiently. More memory allows for better caching and reduces the need to read from disk

frequently.

Disk Type: Using Solid State Drives (SSDs) can significantly improve performance due to faster

read/write speeds compared to traditional Hard Disk Drives (HDDs).

Number of Nodes: If you are planning to deploy in a clustered setup for high availability and load

balancing, the hardware requirements for each node in the cluster should meet or exceed the

recommended specifications.

Network: A fast and reliable network connection is essential, especially when dealing with data

flows that involve multiple sources and destinations.

Java Version: Many of these tools require Java to run. Make sure to use a compatible Java version

based on the tools version you are using.

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_requirements
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_requirements

30

Monitoring and Optimization: As your data flows and usage patterns evolve, consider monitoring

your tool instance's resource utilization and performance. You might need to fine-tune settings and

resources based on the specific requirements of your data flows.

3.5.2 MinIO

MinIO is a software-defined high performance distributed object storage server. You can run MinIO

on consumer or enterprise-grade hardware and a variety of operating systems and architectures.

A cluster should ideally have a minimum of 4 nodes, to meet redundancy requirements, and a

maximum of 32 nodes. A 32-node cluster can store an average of 200 petabytes of data, or 6,250

terabytes per node.

For performance reasons, each node uses on average 1 to 4 GB RAM, 500 milli-core CPU and 400

MHz CPU. The Disk size depends on storage requirements. For big data applications, the main unit

for measuring the capacity of a data node is the terabyte. So, we can consider a minimum storage

capacity of at least 512 GB.

Node CPU Memory Storage

4 \>2 cores 4 to 16 GB \> 100 GB

8 \>4 cores 8 to 32 GB \> 8TB

16 \>8 cores 16 to 64 GB \> 16 TB

32 \>16 cores 64 to 128 GB \> 32 TB

Addition references: https://min.io/product/reference-hardware

3.5.3 JupyterHub

To determine the size requirements of JupyterHub, consider these two factors:

1. number of active Notebook sessions that will run concurrently.

2. complexity of the operations being performed in Notebook

Recommended Memory = (Maximum Concurrent Users * Maximum Memory per User) + 128 MB

Recommended vCPUs = (Maximum Concurrent Users * Maximum CPU Usage per User) + 20%

Recommended Disk Size = (Total Users x Maximum Disk Usage per User) + 2 GB

 Number of concurrent users CPU Memory Storage

10 6 cores 6 GB 12 GB

https://min.io/product/reference-hardware

31

 Number of concurrent users CPU Memory Storage

100 51 cores 60 GB 102 GB

500 501 cores 300 GB 5 TB

Additional references: https://data.berkeley.edu/choosing-right-jupyterhub-infrastructure

3.6 Sample use-case to estimate Hardware requirement

As an example, we have below assumption that will help estimate hardware requirement to

establish a minimum viable data lake platform.

Assumptions:

▪ Data growth: 1 GB of new data monthly in compressed Parquet format.

▪ Data flow: Handles hundreds of MB of data monthly.

▪ User Load: 10 concurrent JupyterHub users working with hundreds of MB of data.

Based on the assumptions outlined above, the hardware requirements can be estimated as below:

▪ Storage:

▪ OS + Kubernetes: 50GB per node
▪ MinIO: Start with 500GB, expandable based on growth

▪ Additional space for logs and temporary files: 100GB

▪ Total: At least 650GB storage, recommend 1TB for growth

▪ CPU

▪ Base Kubernetes system: 2 cores
▪ NiFi: 2 cores (light processing load)

▪ MinIO: 2 cores

▪ JupyterHub: 4 cores (shared among 10 users)

▪ Total: 10 CPU cores (minimum)

▪ Memory:

▪ Base Kubernetes system: 4GB
▪ NiFi: 4GB

▪ MinIO: 4GB

▪ JupyterHub: 20GB (approximately 2GB per user)

▪ Total: 32GB RAM (minimum)

https://data.berkeley.edu/choosing-right-jupyterhub-infrastructure

32

4 Cases Studies
To Be added in next release, but here are few NSO stories for reference.

1. Colombia

2. Senegal

3. Sierra Leone

4. Vietnam

5. Tunisia

6. Maldives

7. Namibia

https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-story-colombia
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/it-architecture-senegal
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/moderniz-stats-sl-data-infrastructure
https://unstats.un.org/UNSDWebsite/capacity-development/data-for-now/story-details/modernizing-vietnam-national-statistical-databas

33

5 Technical implementation guide for minimum data lake

technology stack used in Data4Now

5.1 Overview

Deploying any platform involves necessary planning of the infrastructure, technologies, team,

budget, and processes. It is a multifaceted process that involves careful planning, robust

infrastructure, and adherence to good practices. In the previous section, we briefly touched upon

some of the basic requirements for minimum data lake technology stack. This section will try to

navigate the workings of the platform deployment, offering insights into key concepts, architectural

considerations, deployment strategies, and maintenance practices. However, before jumping into

the actual technical implementation, it is important to plan the implementation strategies and

resource needs. A phased implementation approach could be a good way forward that allows NSOs

to gradually adopt components based on their priorities and capacity.

For the documentation of the deployment process of “Figure 1-1 Minimum data lake technology stack

used in Data4Now”, we will use Kubernetes cluster (k8s) as a scalable platform. However, it can also

be deployed in docker or standalone server as per the need of NSO. The selected open data stack

includes MinIO as storage tool, JupyterHub with Python and R notebooks enabled as analytics tool,

Apache NiFi as data ingestion tool, along with existing Active Directory integrated into each of the

tools as authentication and authorization tool. This configuration represents a minimum setup, and

additional tools or components can be integrated as per the need of the NSO.

There are two sections needed to deploy and manage the Kubernetes cluster. First is the

Administrators workstation that is used to manage the cluster. Second is the actual Datacenter or

servers where the Kubernetes cluster will be installed. Below diagram highlights these two

components.

FIGURE 5-1 DEPLOYMENT OF DATA PLATFORM - SINGLE NODE CLUSTER

34

The Kubernetes cluster can be further configured to be multi-node cluster to achieve high

availability, fault tolerance, and scalability of the applications deployed. Thus far, NSO of Tunisia

(INS) is the only agency where we have used multi-node cluster deployment. Meanwhile in other

NSOs like Viet Nam (GSO), Namibia (NSA), SierraLeone (Stats SL), have used single-node cluster

deployment.

FIGURE 5-2 DEPLOYMENT OF DATA PLATFORM - MULTI-NODE CLUSTER

The selection of the appropriate cluster architecture, whether single-node or multi-node, is

primarily contingent upon the available infrastructure capacity and the level of high availability

required for seamless access to the data lake. A thorough assessment of these factors is essential to

ensure sustainability, resilience, and operational efficiency of the deployed system.

To facilitate effective administration and management of the infrastructure, it is imperative that

both the administrator’s workstation and the designated server(s) be configured with the necessary

tools and software components. These include, but are not limited to :

• The installation of kubectl, Helm, Git, Lens, and the MinIO Client (mc) on the administrator’s

workstation to enable administrative tasks and system monitoring.

• The deployment of a Kubernetes cluster configured with persistent storage to ensure data

durability and system reliability.

The diagram below provides a comprehensive overview of the deployment of infrastructure,

illustrating the key components and their interconnections within the system. The base operating

system for the server/datacenter is Ubuntu.

35

FIGURE 5-3 KUBERNETES INFRASTRUCTURE OVERVIEW

All deployed tools are open source, with images sourced from DockerHub. A connection with Active

Directory ensures a unified authentication mechanism for all users. The platform’s code is available

in the repository at code.officialstatistics.org, with a branch repository created for each country.

In addition to the Kubernetes cluster, an equally crucial tool is deployed on the servers: the

Persistent Storage System. This system facilitates the management of application data within the

Kubernetes cluster by providing mechanisms for backup and restoration of the data.

5.2 Checklist

To facilitate the deployment of the platform, a structured set of steps has been established. An

initial checklist, consisting of three (3) steps, was developed during deployments in NSOs of

Vietnam (GSO) and Namibia (NSA).

A more refined version of the checklist was developed following a mission in NSO of Tunisia (INS).

This version was updated based on insights gained from the deployment in NSO of Sierra Leone

(StatsSL). As a result, the checklist evolved from three (3) steps to nine (9) steps, incorporating

multiple sub-steps to enhance clarity and efficiency.

The complete list of steps and sub-steps included in the checklist is available as an Excel file, as

presented in Annexes ‘Minimum data lake technology stack for Data4Now deployment checklist’.

36

5.3 Deployment

The deployment of the Kubernetes cluster shall be conducted sequentially following the steps

outlined in the checklist.

5.3.1 Prerequisites

This section outlines the essential prerequisites for deploying the minimum data lake infrastructure,
ensuring that all necessary configurations are in place. The servers are expected to be set up with
Ubuntu 24.04 or higher Operating System.

5.3.1.1 Resource Allocation and Component Distribution

Prior to the deployment of the platform, it is important to conduct a comprehensive assessment of
resource allocation and the distribution of components across various servers. This assessment
aims not only to determine the necessary server capacity but also to define the parameters for
configuring resources allocated to each component of the platform. For further information, please
refer to ‘Hardware requirements’

5.3.1.2 Collect Essential Information

The following preparatory information should be readily available:

1. Master Node Identification: The Internet Protocol (IP) address of the master node,
hereinafter referred to as {master_ip_address}.

2. Worker Node Addressing: The IP address of each worker node, required for deployment
documentation, and hereinafter referenced as {worker_ip_address}.

3. Node Naming Convention: Each node should be uniquely identified as “master,” “node1,”
“node2,” etc., referenced in the deployment command line as {node_name}.

4. Code Repository Access: The hyperlink to the official code repository, referenced as
{code_repository_link}.

5.3.1.3 Workstation Setup

It is assumed that the workstation operates on the Windows operating system.

5.3.1.3.1 Install the Essential Tools: Git, Lens, Docker-Desktop

You can deploy the tools (Git, Lens, Docker-desktop) directly from their respective websites. To
facilitate deployment, we are using chocolate package manager to install the required tools using
the code below:

1. Open PowerShell as an administrator and execute the following commands:

Install Windows Chocolatey Package Manager
C:\>Set-ExecutionPolicy Bypass -Scope Process -Force; `
[System.Net.ServicePointManager]::SecurityProtocol = `
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; `
iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/in
stall.ps1'))

37

2. Reopen PowerShell as the current user and install the required tools:

5.3.1.3.2 Establishment of Working Directories

The directory structure of the workspace shall conform to the following scheme:

Execute the following commands to create the required directories:

5.3.1.3.3 Configuration of Environment Variables

Execute the following PowerShell commands to configure the necessary environment variables:

Create main workspace directory
C:\>mkdir "$HOME\data4now"
Create subdirectory for binary files
C:\>mkdir "$HOME\data4now\cli"
Create subdirectory for code content
C:\>mkdir "$HOME\data4now\code"

$HOME\data4now\ # Main project workspace folder
 |__cli/ # CLI subfolder to store downloaded binaries
 | |__helm.exe # Helm tool
 | |__mc.exe # MinIO client tool
 | |__kubectl.exe # Kubernetes client tool
 |
 |__code/ # Subfolder for code content

Install Git
C:\>choco install git -y
Install Lens
C:\>choco install lens -y
Install Docker-Desktop (Optional)
C:\>choco install docker-desktop -y

38

5.3.1.3.4 Downloading Essential Binaries and Cloning the Repository

Download Helm
C:\>Invoke-WebRequest -Uri "https://get.helm.sh/helm-v3.17.1-windows-amd64.zip"
-OutFile "$Env:D4N_WORKSPACE_CLI\helm.zip"
C:\>Add-Type -AssemblyName 'System.IO.Compression.FileSystem'
C:\>[System.IO.Compression.ZipFile]::ExtractToDirectory("$Env:D4N_WORKSPACE_CLI\
helm.zip", $Env:D4N_WORKSPACE_CLI)
C:\>Move-Item -Path "$Env:D4N_WORKSPACE_CLI\windows-amd64\helm.exe" -Destination
 $Env:D4N_WORKSPACE_CLI
C:\>Remove-Item -Path "$Env:D4N_WORKSPACE_CLI\helm.zip"
C:\>Remove-Item -Path "$Env:D4N_WORKSPACE_CLI\windows-amd64" -Recurse

Download Kubernetes client (kubectl)
C:\>$version = (Invoke-RestMethod -Uri https://dl.k8s.io/release/stable.txt).Tri
m()
C:\>$url = "https://dl.k8s.io/$version/bin/windows/amd64/kubectl.exe"
C:\>Invoke-WebRequest -Uri $url -OutFile "$Env:D4N_WORKSPACE_CLI\kubectl.exe"

Download MinIO client (mc)
C:\>Invoke-WebRequest -Uri "https://dl.min.io/client/mc/release/windows-amd64/m
c.exe" -OutFile "$Env:D4N_WORKSPACE_CLI\mc.exe"

Clone the repository
C:\>git clone "$Env:D4N_REPOSITORY.git" $Env:D4N_WORKSPACE_CODE

Define workspace path
C:\>[System.Environment]::SetEnvironmentVariable('D4N_WORKSPACE', "$HOME\data4no
w", [System.EnvironmentVariableTarget]::User)
Define CLI workspace path
C:\>[System.Environment]::SetEnvironmentVariable('D4N_WORKSPACE_CLI', "$HOME\dat
a4now\cli", [System.EnvironmentVariableTarget]::User)
Define code workspace path
C:\>[System.Environment]::SetEnvironmentVariable('D4N_WORKSPACE_CODE', "$HOME\da
ta4now\code", [System.EnvironmentVariableTarget]::User)
Assign master IP address
C:\>[System.Environment]::SetEnvironmentVariable('D4N_MASTER_IP_ADDRESS', "{mast
er_ip_address}", [System.EnvironmentVariableTarget]::User)
Assign repository link
C:\>[System.Environment]::SetEnvironmentVariable('D4N_REPOSITORY', "{code_reposi
tory_link}", [System.EnvironmentVariableTarget]::User)
Update system PATH with CLI directory
C:\>$currentPath = [System.Environment]::GetEnvironmentVariable('Path', [System.
EnvironmentVariableTarget]::User)
C:\>$newPath = "$currentPath;$Env:D4N_WORKSPACE_CLI"
C:\>[System.Environment]::SetEnvironmentVariable('Path', $newPath, [System.Envir
onmentVariableTarget]::User)

39

5.3.1.4 Configuration on Master Node

5.3.1.5 Configuration on Worker Node

Update package lists
$sudo apt-get update -y
Install SSH service
$sudo apt-get install -y openssh-server
Enable root SSH login
$sudo echo "PermitRootLogin yes" | sudo tee -a /etc/ssh/sshd_config > /dev/null
Restart SSH service
$sudo systemctl restart ssh

Update package lists
$sudo apt-get update -y
Install SSH service
$sudo apt-get install -y openssh-server
Enable root SSH login
$sudo echo "PermitRootLogin yes" | sudo tee -a /etc/ssh/sshd_config > /dev/null
Restart SSH service
$sudo systemctl restart ssh
Define repository environment variable
$echo 'D4N_REPOSITORY="{code_repository_link}"' | sudo tee -a /etc/environment
Reboot the server
$sudo reboot

40

5.3.2 Server Preparation (All Nodes)

This section outlines the necessary steps to prepare all nodes in the infrastructure for deployment.
The commands below ensure system updates, disable swap memory, and configure kernel
parameters essential for Kubernetes operations.

5.3.3 Container Runtime Installation

This section details the installation and configuration of the container runtime, which is a
fundamental requirement for Kubernetes nodes. The following steps ensure a reliable and efficient
installation of Docker and cri-dockerd.

Update package lists to ensure the latest versions are available
$sudo apt-get update -y
Disable swap to ensure Kubernetes functions properly
$sudo swapoff -a
$sudo sed -i '/swap/d' /etc/fstab
Load required kernel modules for Kubernetes networking
$sudo cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
overlay
br_netfilter
EOF
Activate the required modules immediately
$sudo modprobe overlay
$sudo modprobe br_netfilter
Configure system networking parameters for Kubernetes
$sudo cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-iptables = 1 # Allow bridge traffic to be processed
by iptables
net.bridge.bridge-nf-call-ip6tables = 1 # Ensure IPv6 bridge traffic is also pr
ocessed
net.ipv4.ip_forward = 1 # Enable IP forwarding for routing
EOF
Apply the new system configurations
$sudo sysctl --system

41

Install prerequisite packages for Docker
$sudo apt install -y curl gnupg2 software-properties-common
Add the official Docker GPG key to the system for package verification
$sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearm
or -o /usr/share/keyrings/docker-archive-keyring.gpg
Add the Docker repository to the system's package sources
$sudo echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings
/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_rele
ase -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
Update package lists to include Docker's repository
$sudo apt update -y
Install Docker and its necessary components
$sudo apt install -y docker-ce docker-ce-cli containerd.io
Enable Docker to start at system boot
$sudo systemctl enable docker
Start the Docker service
$sudo systemctl start docker
Install cri-dockerd (Container Runtime Interface for Docker)
$VERSION=0.3.4
Download the cri-dockerd archive
$sudo wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VERSION}
/cri-dockerd-${VERSION}.amd64.tgz
Extract the contents of the downloaded archive
$sudo tar xvf cri-dockerd-${VERSION}.amd64.tgz
Move the cri-dockerd binary to the appropriate system directory
$sudo mv cri-dockerd/cri-dockerd /usr/local/bin/
Verify the installation by checking the version
$sudo cri-dockerd --version
Download the necessary systemd service files for cri-dockerd
$sudo wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packagi
ng/systemd/cri-docker.service
$sudo wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packagi
ng/systemd/cri-docker.socket
Move the service files to the systemd directory
$sudo mv cri-docker.socket cri-docker.service /etc/systemd/system/
Modify the service file to reference the correct binary location
$sudo sed -i -e 's,/usr/bin/cri-dockerd,/usr/local/bin/cri-dockerd,' /etc/system
d/system/cri-docker.service
Reload systemd to recognize the new services
$sudo systemctl daemon-reload
Enable cri-dockerd to start at system boot
$sudo systemctl enable cri-docker
Start the cri-dockerd service
$sudo systemctl start cri-docker
Check the status of the cri-dockerd service to ensure it is running
$sudo systemctl status cri-docker

42

5.3.4 Secure Shell (SSH) Access Configuration

This section outlines the necessary steps to establish secure and password-less SSH access between
the master node and worker nodes. This setup facilitates seamless remote management and
communication between the nodes in a Kubernetes cluster.

5.3.4.1 Generating an SSH Key on the Master Node

5.3.4.2 Distributing the SSH Key to Worker Nodes

5.3.5 Installation of Kubernetes Cluster

This section provides a structured approach to setting up a Kubernetes cluster, including installing

necessary dependencies, configuring the cluster, deploying it, and setting up a metrics server for

monitoring resource utilization.

5.3.5.1 Installation of Required Packages

Copy the SSH public key from the master node to each worker node
$ssh-copy-id -i ~/.ssh/id_rsa.pub root@<node_ip_address>
Restart the SSH service on the worker node to apply the changes
$ssh root@<node_ip_address> 'sudo systemctl restart ssh'

Generate an SSH key pair with RSA encryption (4096-bit) without a passphrase
$sudo ssh-keygen -t rsa -b 4096 -N "" -f ~/.ssh/id_rsa
Append the generated public key to the list of authorized keys
$sudo cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Restart the SSH service to apply changes
$sudo systemctl restart ssh

Install essential dependencies for Kubernetes cluster management
$sudo apt-get install -y socat conntrack
Download KubeKey, a lightweight tool for Kubernetes installation and cluster

management
$sudo curl -sfL https://get-kk.kubesphere.io | sh -
Move the KubeKey binary to a system-wide directory for easy execution and

remove temporary installation files
$sudo mv kk /usr/local/bin && sudo rm kubekey*

43

5.3.5.2 Creating and Editing the Cluster Configuration

5.3.5.3 Deploying the Kubernetes Cluster

5.3.5.4 Deploying the Metrics Component

5.3.6 Installation of Persistent Storage

This section outlines the necessary steps to install and configure persistent storage using Longhorn.

These steps ensure that each node is equipped with the required dependencies, and that Longhorn

is correctly deployed and verified within the Kubernetes cluster.

Generate a configuration file for the Kubernetes cluster
$sudo kk create config -f kubernetes-config.yaml
Open the configuration file for editing and specify cluster details
Sample configuration:
hosts:
- {name: {node_name}, address: {worker_ip_address}, internalAddress:

{worker_ip_address}, user: root, privateKeyPath: "~/.ssh/id_rsa"}
...
kubernetes:
List of supported versions can be found at:
https://github.com/kubesphere/kubekey/blob/master/docs/kubernetes-

versions.md
version: v1.25.3
containerManager: docker
...
network:
plugin: flannel
$sudo nano kubernetes-config.yaml

Deploy the cluster using the specified configuration file
$sudo kk create cluster -f kubernetes-config.yaml

Deploy the Metrics Server to monitor cluster resource usage
$sudo kubectl apply -f $D4N_REPOSITORY/blob/main/docs/configs/metrcics-server-

components.yaml
Verify that the Metrics Server deployment is active
$sudo kubectl get deployment metrics-server -n kube-system
Ensure that the Metrics Server pod is running
$sudo kubectl get pods --namespace kube-system
Display node-level resource usage statistics
$sudo kubectl top nodes

44

5.3.6.1 Installation of Required Packages for Longhorn

5.3.6.2 Installation of Longhorn from the Master Node

5.3.6.3 Verification of Longhorn Deployment

Update package lists to ensure availability of the latest versions
$sudo apt update
Install Open-iSCSI and NFS support, which are essential for Longhorn storage

operations
$sudo apt install -y open-iscsi nfs-common
Enable and start the iSCSI daemon to ensure automatic startup on boot
$sudo systemctl enable iscsid
$sudo systemctl start iscsid
Load the iSCSI kernel module to support iSCSI storage connections
$sudo modprobe iscsi_tcp
Persistently enable the iSCSI module to ensure it loads at boot time
$echo "iscsi_tcp" | sudo tee /etc/modules-load.d/iscsi_tcp.conf

Add the official Longhorn Helm repository to the Helm package manager
$sudo helm repo add longhorn https://charts.longhorn.io
Update the Helm repository to fetch the latest available versions
$sudo helm repo update
Create a dedicated namespace for Longhorn within the Kubernetes cluster
$sudo kubectl create namespace longhorn-system
Deploy Longhorn using Helm within the dedicated namespace
$sudo helm install longhorn longhorn/longhorn --namespace longhorn-system
Verify the installation by listing all pods in the Longhorn namespace
$sudo kubectl get pods -n longhorn-system
Apply a Kubernetes configuration to expose the Longhorn UI via a NodePort

service
$sudo kubectl apply -f $D4N_REPOSITORY/blob/main/docs/configs/longhorn-

proxy.nodeport.yaml
The Longhorn UI can now be accessed via HTTP at:
http://<server_ip_address>:30080

Ensure that the Longhorn pod manager is running on each node
$sudo kubectl get pods -n longhorn-system -o wide | grep {node_name}
Verify the integration of nodes with Longhorn storage
$sudo kubectl get nodes.longhorn.io -n longhorn-system

45

5.3.7 Configuring Kubectl on the Workstation

This section provides guidance on configuring kubectl on the workstation, ensuring connectivity

with the Kubernetes cluster. The process varies based on whether kubectl is newly installed or if an

existing configuration is present.

5.3.7.1 Configuration for a Newly Installed Kubectl

5.3.7.1.1 Download the kubernetes config file from the cluster

5.3.7.1.2 Edit/Modifying the Kubeconfig File

The kubeconfig file should be updated as shown below:

❑ 1: address to the server

❑ 2: Cluster name

❑ 3: default namespace

❑ 4: context name

FIGURE 5-4 EDIT THE KUBECONFIG FILE

Create the .kube directory to store configuration files
C:\>mkdir $HOME\.kube
Copy the kubeconfig file from the master node to the local workstation
C:\>scp root@$Env:D4N_MASTER_IP_ADDRESS:/etc/kubernetes/admin.conf

$HOME\.kube\config
Verify the cluster connection by checking available contexts
C:\>kubectl config get-contexts
Verify that the cluster nodes are accessible
C:\>kubectl get nodes

46

5.3.7.1.3 Verify the access to the cluster

5.3.7.2 Configuration When an Existing Cluster is Already Set Up

If the workstation already has an existing Kubernetes cluster configuration, follow these steps to

merge the new kubeconfig file.

5.3.7.2.1 Download the kubernetes config file from the cluster

5.3.7.2.2 Modifying the new-config File

The new-config file should be edited as illustrated on “Figure 5-4 Edit the kubeconfig file”

5.3.7.2.3 Merge both the new and current config files

Verify the Cluster Connection Again
C:\>kubectl config get-contexts
C:\>kubectl get nodes

Copy the new kubeconfig file from the master node to the local workstation
C:\>scp root@$Env:D4N_MASTER_IP_ADDRESS:/etc/kubernetes/admin.conf

$HOME\.kube\new-config

Temporarily set the KUBECONFIG environment variable to include both

configurations
C:\>$Env:KUBECONFIG="$HOME\.kube\config;C:\$HOME\.kube\new-config"
Backup the existing configuration file before making changes
C:\>cp $HOME\.kube\config $HOME\.kube\config.bak
Merge the new kubeconfig file with the existing one
C:\>kubectl config view --flatten > $HOME\.kube\config.merged
Replace the default kubeconfig file with the merged configuration
C:\>mv -Force $HOME\.kube\config.merged $HOME\.kube\config
Remove the temporary new-config file
C:\>Remove-Item -Path $HOME\.kube\new-config
Reset the KUBECONFIG environment variable to point to the final configuration
C:\>$Env:KUBECONFIG = "$HOME\.kube\config"

47

5.3.7.2.4 Verify the access to the cluster

5.3.8 Clean-Up Procedures

This section provides guidance on securing the server environment by disabling root SSH login on all

nodes, including both master and worker nodes. Restricting root access enhances security and

mitigates unauthorized access risks.

5.3.8.1 Disabling Root SSH Login

5.3.9 Deployment of the Minimum Data Lake Stack

This section outlines the step-by-step procedure for deploying the essential components of a data

lake, including MinIO for storage, JupyterHub for analytics, and Apache NiFi for data ingestion. The

deployment is performed from the workstation onto a Kubernetes cluster.

5.3.9.1 Deploy MinIO (Storage)

 If deploying on a local Docker Desktop Kubernetes cluster

Verify the Cluster Connection After Merging
C:\>kubectl config get-contexts
Set the default context to the appropriate Kubernetes cluster
C:\>kubectl config use-context <context-name>
Verify that the nodes are accessible
C:\>kubectl get nodes

Remove the line that explicitly enables root login from the SSH configuration

file
$sudo sed -i '/^PermitRootLogin yes$/d' /etc/ssh/sshd_config
Restart the SSH service to apply the changes
$sudo systemctl restart ssh

Navigate to the MinIO deployment directory
C:\>cd $Env:D4N_WORKSPACE_CODE\d4n-minio
Create a dedicated namespace for storage components
C:\>kubectl create namespace d4n-storage
Copy the local configuration file and edit it if necessary
C:\>cp values.local.yaml config.yaml
Install or upgrade MinIO using Helm, ensuring proper configuration
C:\>helm upgrade --cleanup-on-fail --install minio . --namespace d4n-storage --
values config.yaml

48

 If deploying on a remote server

5.3.9.2 Deploy JupyterHub (Analytics)

 If deploying on a local Docker Desktop Kubernetes cluster

Apply the local load balancer configuration to expose MinIO at

http://localhost:9001
The internal service endpoint for JupyterHub and Apache NiFi remains:
http://minio.d4n-storage.svc.cluster.local:9000
C:\>kubectl apply -f local-loadbalancer.yaml

Apply the NodePort proxy configuration to expose MinIO at

http://{master_ip_address}:309
The internal service endpoint for JupyterHub and Apache NiFi remains:
http://minio.d4n-storage.svc.cluster.local:9000
C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-storage

Navigate to the JupyterHub deployment directory
C:\>cd $Env:D4N_WORKSPACE_CODE\d4n-jupyterhub
Add the official JupyterHub Helm repository and update Helm repositories
C:\>helm repo add jupyterhub https://hub.jupyter.org/helm-chart/
C:\>helm repo update
Create a dedicated namespace for analytics components
C:\>kubectl create namespace d4n-analytics
Copy the local configuration file and edit it if necessary
C:\>cp values.local.yaml config.yaml
Install or upgrade JupyterHub using Helm with the specified configuration
C:\>helm upgrade --cleanup-on-fail --install jupyter jupyterhub/jupyterhub --
namespace d4n-analytics --version=3.0.3 --values config.yaml

Apply the local load balancer configuration to expose JupyterHub at

http://localhost:8080
C:\>kubectl apply -f local-loadbalancer.yaml

49

 If deploying on a remote server

5.3.9.3 Deploy Apache NiFi (Ingestion)

 If deploying on a local Docker Desktop Kubernetes cluster

 If deploying on a remote server

Apply the NodePort proxy configuration to expose JupyterHub at

http://{master_ip_address}:30808
C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-analytics

Navigate to the Apache NiFi deployment directory
C:\>cd $Env:D4N_WORKSPACE_CODE\d4n-apache-nifi
Add the official Apache NiFi Helm repository and update Helm repositories
C:\>helm repo add cetic https://cetic.github.io/helm-charts
C:\>helm repo update
Copy the local configuration file and edit it if necessary
C:\>cp values.local.yaml config.yaml
Create a dedicated namespace for ingestion components
C:\>kubectl create namespace d4n-ingestion
Install or upgrade Apache NiFi using Helm with the specified configuration
C:\>helm upgrade --cleanup-on-fail --install nifi cetic/nifi --namespace d4n-ing
estion --version=1.2.1 --values config.yaml

Apply the local load balancer configuration to expose Apache NiFi at

https://localhost:8443
C:\>kubectl apply -f local-loadbalancer.yaml

Apply the NodePort proxy configuration to expose Apache NiFi at

https://{master_ip_address}:30443
C:\>kubectl apply -f proxy.nodeport.yaml --namespace d4n-ingestion

50

5.3.10 Integrate Active Directory

1 Apache NiFi: Apache NiFi has built-in support for user authentication and authorization. You

can use NiFi's policies and user groups to define access controls based on roles and

permissions. You can also integrate NiFi with external identity providers using OAuth or LDAP

for more advanced RBAC scenarios. (Link)

2 MinIO: MinIO supports Identity and Access Management (IAM) policies that allow you to

define RBAC. You can create users and groups and assign policies that define their access to

buckets and objects. MinIO also supports integration with external identity providers like LDAP.

(Link)

3 Trino (PrestoSQL): Trino offers a robust security framework that includes RBAC. You can

configure access control using catalog-level, schema-level, and table-level permissions. Trino

supports integration with Hive Metastore and LDAP for user management and authentication.

(Link)

4 JupyterHub: JupyterHub allows you to integrate with various authentication providers (OAuth,

LDAP) and define RBAC for notebooks and resources. You can use tools like Kubernetes RBAC

or JupyterHub's built-in authentication mechanisms to control access to Jupyter notebooks.

(Link)

Integrate Identity Provider: If possible, integrate a single identity provider or SSO solution to

manage user identities and roles centrally. Please see ‘Active Directory Distinguished Name (DN)’ if

you have issue on extracting Distinguish Name from AD.

Remember that RBAC implementation can be complex, especially when dealing with a diverse set

of tools and components. Collaboration between IT, security, and application teams is essential to

ensure a cohesive and effective RBAC setup.

5.3.11 Using the tools

We are in the process of documenting selected use cases focused on setting access policies in MinIO
and building data pipelines in Apache NiFi. These examples aim to demonstrate practical ways the
tools can be used in real-world scenarios. In addition to this, many other guides and tutorials are
available online.

• Minio use-case: Structure the storage for Labor Force and Living Standard datasets
• Apache NiFi use cases: Dataflow to Ingestion sample data
• Run Python script in jupyterhub to ingest data from an ftp server to MinIO. see “Coding tools”

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
https://min.io/docs/minio/windows/operations/external-iam/configure-ad-ldap-external-identity-management.html
https://trino.io/docs/current/security/ldap.html
https://github.com/jupyterhub/ldapauthenticator?tab=readme-ov-file#active-directory-integration
https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Minio-Use-case-workshops.pdf
https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Apache-Nifi-use-case-workshop.pdf

i

A. Annexes

A.1 Data4Now: IT Guiding Questionnaire

The main objective of this questionnaire is to Identify requirements of the NSO/NSS in country and

the challenges it is facing (mostly focusing on data flow) in technology landscape and is developed

and used by Data for Now team. Many times, the human element is left behind in these processes,

so a focus on skill analysis and how to fill those gaps should also be identified in the process while

following the IT (modernization) strategy of the organization. These challenges should be used as

opportunities to fill skill gaps, or process modernization while incorporating new and innovative

data sources, methods and tools while modernizing the IT architecture. Add new columns for

additional answers. Download IT Guiding Questionnaire

Group ID Question Answer

1
Answer
2 …

Example

General g-1 Date

g-2 Country

g-3 Individual responding to questions
(Add as many people as needed
separated by semicolon)

 Name/Organization/Title;
Name/Organization/Title

g-4 Could you briefly describe the
Current Context - Existing
situation/process?

g-5 Who are the Teams/people
involved in the process?

g-6 Could you share the IT strategy of
the organization?

g-7 Could you share any IT
assessments or previous reports
on the IT Infrastructure or IT
architecture diagram?

g-8 Could you share the IT team
structure (organization chart)

Data
Source

ds-1 Who is the owner of the data and
what is the dataset?

 NSO, NSS, Ministry Name,
Gov agency Name, MNO,
Private Company, NGO
Name, etc.

ds-2 Is there a
mandate/agreement/MoU to get
Data from source? If yes, could
you briefly explain.

ds-3 Are there any challenges in data
source?

 data access, data quality,
data format, data
inconsistency,
classification/harmonizati
on, etc.

Tools/technology stack currently used:

https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/D4N-IT-Guiding-Questions.xlsx

ii

Data
Ingestion
Process/
tools

di-1 Who is the main
person/team/section involved in
ingestion of this data?

di-2 How do they get Data from
Source?

 email, flash-drive, web-
scrapping, db-connection
(ODBC/JDBC), Data-
API(REST/SOAP), sFTP,
GraphQL, XBRL, SDMX,
Swagger(OpenAPI), etc.

di-3 In which format is data source
originally received?

 JSON, XML, CSV, Excel,
.dat, .stat, .txt, Apache
Parquet, Avro, HDF5,
other Binary format, etc.

di-4 How often do you receive this
dataset?

 monthly/annually/
occasionally, etc.

di-5 Does it involve geospatial specific
data? If yes, how is it handled?

 (shp, geojson, kml, geoTiff,
gpkg, gdb – Esri, nc, tab,
etc.)

di-6 Does the data structure follow any
standards like SDMX/DDI? Does it
have Metadata?

di-7 Do you use any
tool/software/code/scripts to
ingest data?

 (Python, R, Apache NiFi,
Pentaho, Talend,
Informatica, etc.)

di-8 Did the relevant person/team
receive/attended any training in
above tool/script or required
tool/platform for data ingestion?

di-9 Can the ingestion process be
automated?

di-
10

Do you follow the ETL or ELT
process?

di-
11

How is data transformed into the
structure/format that you need?
Does it happen during the
ingestion process or later?

di-
12

Are there any challenges in data
ingestion process including human
and technical capacity?

Data
Storage

db-1 Who is the main
person/team/section involved in
managing the storage section?

db-2 What kind of storage media is
being used to store the ingested
data?

 (Relational-Database,
Data Center, File System-
NAS, File Server, Data
Warehouse, Data Lakes,
SPSS/SAS application,
Cloud Storage, Geospatial

iii

Database (ESRI, QGis),
etc.)

db-4 Who manages security policies
and how do you ensure its
compliance?

db-5 Metadata: Do you use any
metadata standards? (DDI, SDMX,
ISO 11179, etc.) Any metadata
management and dissemination
tools?

db-6 Are there any challenges in data
storage?

Data
Processing

dp-1 Who is the main
person/team/section involved in
data processing?

dp-2 Are there policy/procedures in
place to ensure secure access to
sensitive data? If yes, could you
briefly explain.

 Role-based-access-control,
user authentication, used
logging and monitoring,
Database access control,
Threat detection, etc.

dp-3 Is there a data
pseudonymization/anonymization
process in place

dp-4 What tools/platforms/language do
you use for querying and
processing

 Jupiter Notebook, Python,
R, SPSS, Stata, qGIS,
ArcGIS, etc.

dp-5 How are records from different
data sources linked (Record
linking)?

 (e.g., using unique
identifier, fuzzy matching,
probabilistic linkage,
machine learning
algorithm, etc.)

dp-6 What are the main products or
statistics produced from your
statistical registers system

dp-7 Are there any challenges in data
Processing?

Data
Disseminati
on

dd-1 Who is the main
person/team/section involved in
data dissemination?

dd-2 What tools/platforms/language do
you use for data dissemination

dd-3 Did the relevant person/team
receive/attend any training in the
above tool/platform for data
dissemination?

dd-4 Are there any challenges in data
Dissemination?

iv

A.2 Data ingestion tools

A.2.1 Coding tools

Python, R, Java, C#, Scala are some of the programming languages used in data ingestion coding

framework. Below is an example of python script that ingests data from an ftp server to MinIO.

import os
from ftplib import FTP
import boto3
import datetime

def download_from_ftp(ftp_server, username, password, remote_folder, local_filename):
 with FTP(ftp_server) as ftp:
 ftp.login(user=username, passwd=password)
 ftp.cwd(remote_folder)
 with open(local_filename, "wb") as file:
 ftp.retrbinary("filename.csv", file.write)

def upload_to_s3(s3_bucket, local_filename, s3_subfolder):
 s3 = boto3.resource('s3')
 bucket = s3.Bucket(s3_bucket)
 s3_key = os.path.join("raw", s3_subfolder, "filename.csv")
 bucket.upload_file(local_filename, s3_key)

def move_on_ftp(ftp_server, username, password, remote_folder, timestamp):
 with FTP(ftp_server) as ftp:
 ftp.login(user=username, passwd=password)
 ftp.cwd(remote_folder)
 new_folder = os.path.join("2023", timestamp)
 ftp.mkd(new_folder)
 ftp.rename("filename.csv", os.path.join(new_folder, "filename.csv"))

def main():
 ftp_server = "10.0.0.1"
 ftp_username = "your_ftp_username"
 ftp_password = "your_ftp_password"
 s3_bucket = "your_s3_bucket"
 timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")

 # Step 1: Download from FTP and save locally
 download_from_ftp(ftp_server, ftp_username, ftp_password, "/2023", "filename.csv")

 # Step 2: Upload to S3 with timestamped subfolder
 upload_to_s3(s3_bucket, "filename.csv", timestamp)

 # Step 3: Move file within FTP server to a timestamped subfolder
 move_on_ftp(ftp_server, ftp_username, ftp_password, "/2023", timestamp)

 # Clean up local file after processing
 os.remove("filename.csv")

if __name__ == "__main__":
 main()

v

A.2.2 Low code Tools

Some Free and open-source low code tools used by various NSS and available in the market

includes Apache NiFi, Airbyte, Pentaho PDI (Kettle), etc.

A.3 Data storage format

A.3.1 Parquet

Apache Parquet is a columnar storage file format optimized for analytical workloads. It is designed

to efficiently store large volumes of data and is compatible with multiple data processing

frameworks, such as Apache Spark, Apache Hive, Apache Drill, and more.

Parquet stores data in a way that allows selective reading of specific columns, significantly reducing

I/O and speeding up data processing. It supports rich data types and schema evolution, making it

highly versatile for big data analytics.

Good Practices

o Use Compression Wisely: Employ compression algorithms like Snappy or GZIP, depending on

the trade-off between compression speed and size. (Link)

o Partition Data: Partition the dataset by frequent query dimensions (e.g., date or region) to

minimize the amount of data scanned during queries.

o Optimize Column Order: Arrange columns in the file according to their usage frequency to

optimize query performance.

o Chunk Data into Optimal Sizes: Avoid creating too many small Parquet files as this increases

overhead. Target 128 MB to 1 GB file sizes to balance performance and manageability.

o Use Predicate Pushdown: Utilize tools that support predicate pushdown to filter rows during

the scan phase, reducing unnecessary reads.

o Store Metadata Efficiently: Leverage the Parquet file’s internal metadata structure for

schema definitions, minimizing external dependencies.

o Validate Schema Consistency: Ensure consistency in schema when appending new data to

avoid compatibility issues.

o Batch Writes: When writing Parquet files, use batch processing to optimize I/O performance

and avoid file fragmentation.

o Avoid Nested Structures If Possible: Flatten deeply nested schemas if query performance

and simplicity are critical.

o Evaluate Tool Compatibility: Ensure that the tool or framework you are using supports the

latest Parquet specification to leverage its full capabilities.

Choosing the right storage format depends on factors like the nature of the data, query performance

requirements, data volume, and the tools and technologies used in your data lake ecosystem. It is often a

trade-off between storage efficiency, processing speed, schema flexibility, and compatibility with analytics

tools.

https://parquet.apache.org/docs/file-format/data-pages/compression/

vi

A.4 Data Virtualization

Data virtualization in data lake architecture involves providing a unified and abstracted view of

data from various sources, including structured, semi-structured, and unstructured data, without

physically moving or replicating the data. It allows users and applications to access and query data

as if it were in a specific location, even though the data might be distributed across different

storage systems, databases, or formats. Data virtualization simplifies data access, enhances agility,

and reduces the need for complex ETL/ELT processes.

Trino (formerly known as PrestoSQL) and Presto are popular open-source tools for data

virtualization and federated querying in data lake architectures. They provide efficient and flexible

ways to access and analyze data from multiple sources in real-time. Other open-source options for

data virtualization include Apache Drill and Denodo, which offer similar capabilities to enable

unified data access across heterogeneous sources within a data lake ecosystem.

1. Trino (PrestoSQL): Trino is a distributed SQL query engine designed for high-performance

data processing across a variety of data sources. It can query data from different storage

systems like HDFS, cloud object storage, relational databases, and more. Trino enables data

virtualization by allowing users to execute SQL queries that span multiple data sources

seamlessly. It supports federated queries, which means it can access and join data from

various sources as if they were in a unique location. (Link)

2. Presto: Presto is another popular open-source distributed SQL query engine that offers

similar data virtualization capabilities. It can query data from various data sources, making it

possible to perform complex analytics across different storage systems without the need for

data movement. (Link)

Example

To run a Trino query on survey data stored in the MinIO subfolder raw/survey/2023, you need to

create an external table in Trino that points to the data location in MinIO. Here is an example of

how to achieve this:

1. Create an External Table:

Run the following Trino SQL query to create an external table that points to the survey data stored

in the MinIO subfolder raw/survey/2023:

CREATE TABLE survey_data (

 column1 data_type,

 column2 data_type,

 ... -- Add other columns as per your data schema

)

WITH (

 format = 'ORC', -- Replace with the actual format of your data (e.g., Parquet, CSV, etc.)

 external_location = 's3a://raw/survey/2023/'

);

https://trino.io/
https://prestodb.io/

vii

Make sure to replace data_type with the appropriate data types for your columns

2. Query the Data:

Once the external table is created, you can query the survey data using standard SQL queries in

Trino:

SELECT * FROM survey_data WHERE condition_column = 'some_value';

Replace condition_column and 'some_value' with the appropriate filtering conditions based on

your survey data requirements.

A.5 Data processing tools

A.5.1 Collaboration Platform – JupyterHub (Server)

JupyterHub brings the power of notebooks to groups of users. It gives users access to

computational environments and resources without burdening the users with installation and

maintenance tasks. Users including statisticians, researchers, and data scientists - can get their

work done in their own workspaces on shared resources which can be managed efficiently by

system administrators. It is customizable and scalable, and is suitable for small and large teams, and

large-scale infrastructure. (Link)

A.5.2 Collaboration Platform - JupyterLab

JupyterLab is an open-source, web-based interactive development environment (IDE) for Jupyter

notebooks, code, and data. It provides a flexible interface for programming in languages like

Python, R, and Julia, enabling data visualization, interactive computing, and reproducible research.

It extends the functionality of Jupyter Notebooks with support for multiple panes, extensions, and

collaborative features. In addition to Python and R, we can also use Stata and QGIS within

JupyterLab as shown below:

Stata (Source)

A licensed version of Stata must already be installed. stata_kernel has been reported to work with at least

Stata 13+ and may work with Stata 12.

We can run Stata in a Jupyter Notebook environment using the "Stata Kernel" or by using the "Stata in

Jupyter" integration. This allows you to combine the interactive capabilities of Jupyter Notebooks with the

statistical and data analysis power of Stata.

Running STATA on jupyterlab may have some limitation compared to running Stata directly in its native

environment. You can find more details and limitation in the kernel documentation

https://jupyter.org/hub
https://kylebarron.dev/stata_kernel/
https://kylebarron.dev/stata_kernel/using_stata_kernel/limitations/

viii

Geo-spatial analysis

QGIS, which stands for "Quantum Geographic Information System," is an open-source geographic

information system (GIS) software that allows users to create, analyze, visualize, and manage

geographic and spatial data. It provides a powerful platform for working with several types of

spatial data, such as maps, satellite imagery, GPS data, and more.

It is possible to run QGIS within a Jupyter Notebook environment using PyQGIS to interact with

QGIS from within a Python script, and you can execute these scripts in a Jupyter Notebook. This

approach allows you to perform geospatial analysis, data manipulation, and more using the QGIS

functionality exposed through PyQGIS. Source

https://plugins.qgis.org/planet/tag/jupyter/

ix

A.5.3 Framework - Apache spark

Apache Spark is an open-source unified analytics engine for large-scale data processing. It provides high-level

APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also

supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, pandas

API on Spark for pandas workloads, MLlib for machine learning, GraphX for graph processing, and Structured

Streaming for incremental computation and stream processing.

(Source: https://spark.apache.org/docs/latest/)

A.5.4 Framework – Dask

Dask is an open-source Python library that allows users to perform parallel computing on large data sets and

machine learning tasks. It provides distributed computing for Python (https://www.dask.org/)

A.5.5 DuckDB

DuckDB is an open-source high-performance analytical database system. It is designed to be fast, reliable,

portable, and easy to use. DuckDB provides a rich SQL dialect, with support far beyond basic SQL. DuckDB

supports arbitrary and nested correlated subqueries, window functions, collations, complex types (arrays,

structs, maps), and several extensions designed to make SQL easier to use. DuckDB is available as a

standalone CLI application and has clients for Python, R, Java, Wasm, etc., with deep integrations with

packages such as pandas and dplyr. (Source - https://github.com/duckdb/duckdb)

https://spark.apache.org/docs/latest/
https://www.dask.org/
https://duckdb.org/docs/guides/sql_features/friendly_sql

x

A.5.6 Language - Python

A versatile language with libraries like Pandas, NumPy, SciKit-learn, statsmodels, dask, etc. which are widely

used for data manipulation, analysis, and statistical computations. You can run Dask on: Laptops,

Kubernetes, HPC job schedulers, Cloud SaaS services, and Legacy Hadoop/Spark clusters.

A.5.7 Language - R

A language dedicated to statistical computing and graphics with popular packages like dplyr, tidyverse and sf

for geospatial analysis. It's favored by statisticians and data analysts for its extensive collection of statistical

packages.

A.5.8 OpenRefine

An open-source tool for data cleaning and transformation. It provides features for data profiling, data

enrichment, and reconciling inconsistencies.

A.5.9 Geospatial - QGIS

QGIS, formerly known as Quantum GIS, is a free, open-source geographic information system (GIS) software

that allows users to view, edit, analyze, and publish spatial data. QGIS is a free alternative to proprietary GIS

software like ESRI's ArcGIS products. It has similar functions and features, and supports a variety of spatial

data file extensions, including .shp, .tif, .csv, and .img. QGIS is compatible with Linux, Unix, Mac, and

Windows. (Source – www.qgis.org)

A.6 Data orchestration tools

A.6.1 Dagster:

Dagster is a data orchestrator specifically designed to address the challenges of data quality,

testing, and monitoring in complex data workflows. It focuses on building reliable, testable, and

maintainable data pipelines while emphasizing data lineage, observability, and data quality

assurance.

Key features of Dagster:

• Data Quality Assurance: Dagster provides built-in features for data testing, validation, and

quality assurance. It ensures that data flowing through the pipeline meets defined criteria

and expectations.

• Type System: Dagster uses a strong type of system to ensure that data transformations are

correctly and consistently defined, helping prevent runtime errors.

• Modularization: Dagster encourages modularization of data pipeline components, making it

easier to test and maintain individual components.

• Data Lineage: Dagster tracks data lineage, meaning you can trace where data came from

and where it goes in your pipeline. This is essential for understanding and troubleshooting

data issues.

http://www.qgis.org/

xi

• Orchestration: While Dagster itself does not handle scheduling and execution, it can

integrate with other orchestration tools like Apache Airflow or Prefect for running pipeline

executions.

A.6.2 Apache Airflow:

Apache Airflow is a general-purpose workflow scheduler that allows you to define, schedule, and

execute complex workflows as directed acyclic graphs (DAGs). It is widely used for orchestrating

several types of tasks, including data processing, ETL, and more.

Key features of Apache Airflow:

• Workflow Orchestration: Airflow is focused on orchestrating workflows and automating

task scheduling and executing in various scenarios.

• Dynamic DAGs: Airflow supports dynamically generating DAGs and tasks based on

configurations, which can be useful for handling varying workloads or dynamic data sources.

• Scheduling: Airflow provides powerful scheduling capabilities for executing tasks at specific

times or intervals.

• Extensibility: Airflow allows you to extend its functionality through custom operators,

hooks, and plugins, enabling integration with a wide range of systems and services.

• Community and Ecosystem: Apache Airflow has a large and active community, resulting in a

rich ecosystem of contributed operators, plugins, and integrations.

A.7 Security and authorization

A.7.1 Functionalities to consider in security

1. Data Anonymization/Pseudonymization: Anonymizing or pseudonymizing sensitive data

before sharing allows you to provide access to data without revealing the identities of

individuals. This approach maintains privacy while enabling analysis.

2. Data Masking/Tokenization: Replace sensitive data with masked or tokenized versions

while preserving the data format. This approach is useful when the actual data is not

required for analysis, but the structure is.

3. Secure Data Sharing Platforms: Implement secure data sharing platforms that enforce strict

access controls and encryption for data in transit and at rest. These platforms often allow

fine-grained control over who can access which parts of the data.

4. Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC): Implement

RBAC and ABAC mechanisms to ensure that users can only access data and perform actions

that are relevant to their roles and responsibilities.

xii

5. Data Virtualization: Data virtualization tools allow users to access data from various sources

without having direct access to the underlying data. This provides a layer of abstraction

while maintaining control over data access.

6. Data Sharing Agreements: Establish clear data sharing agreements with external parties,

defining the purposes for which the data will be used, the security measures that need to be

in place, and the responsibilities of both parties.

7. Secure APIs: Provide controlled access to data through secure APIs. This enables users to

retrieve the data they need without direct access to the underlying database.

8. Time-Limited Access: Grant temporary access to data for specific purposes and timeframes.

Once the designated period is over, the access is revoked.

9. Data Minimization: Share only the minimum amount of data necessary for the intended

analysis or purpose, reducing the risk of exposing sensitive information.

10. Data Governance and Auditing: Implement robust data governance practices, including

tracking data access and usage. Regular audits help ensure that data is being used

appropriately, and that compliance is maintained.

11. Consent Management: If applicable, obtain explicit consent from data subjects for sharing

their data. Implement mechanisms to manage and track consent preferences.

12. Encryption and Key Management: Encrypt data before sharing it and manage encryption

keys securely. This way, even if unauthorized access occurs, the data remains unintelligible

without the proper decryption keys.

13. Secure Collaboration Tools: Utilize secure collaboration and analytics platforms that provide

a controlled environment for sharing and analyzing data without exposing the raw data to

users.

14. Education and Training: Educate users about the importance of data privacy and security,

ensuring they understand their responsibilities and the potential risks associated with

mishandling data.

15. Regular Risk Assessments: Conduct regular risk assessments to identify potential

vulnerabilities and address them before they lead to security breaches.

16. Data Classification: Classify data based on its sensitivity and restrict access accordingly.

Different levels of data may have different access requirements.

Remember that each organization's situation is unique, so it's important to tailor these approaches

to your specific data, user base, and compliance requirements. Collaboration between IT, legal,

compliance, and business stakeholders is crucial to successfully implement these approaches while

maintaining security and privacy.

A.7.2 Access Control

Focusing more from Access Control, Role-Based Access Control (RBAC) and Attribute-Based Access

Control (ABAC) are access control mechanisms that help manage user access to data and resources

in a way that aligns with security and compliance requirements.

xiii

Role-Based Access Control (RBAC): In an RBAC system, access is determined based on the roles

that users hold within the organization. Each role has associated permissions that define what

actions a user with that role can perform. Users are then assigned roles, and their access rights are

determined by the permissions associated with those roles. RBAC simplifies access management by

grouping users into roles and applying permissions at the role level.

Attribute-Based Access Control (ABAC): ABAC is a more flexible access control model that

considers various attributes and conditions when making access decisions. In ABAC, access is

granted or denied based on the values of attributes associated with users, resources, and the

environment, along with predefined policies.

Feature Role-Based Access Control
 (RBAC)

Attribute-Based Access Control
(ABAC)

Core Concept Access based on predefined
roles

Access based on attributes/policies

Decision Basis Who you are (role) Who, what, when, where, why (context)
Complexity Simpler to implement and

manage
More complex implementation

Flexibility Limited (fixed role definitions) Highly flexible (dynamic decisions)
Granularity Coarse-grained Fine-grained
Scalability Role explosion in complex

environments
Scales better for complex scenarios

Policy Expression "User A has Role X" "Users with Attribute B can access
Resource C under Condition D"

Implementation
Effort

Lower Higher

Maintenance Easier for simple systems,
harder as roles multiply

Complex initially, but can be more
manageable long-term

Typical Use Cases SMBs, simpler access needs Large enterprises, dynamic
environments

Dynamic Context Limited or none Extensive (time, location, device, etc.)
Examples Active Directory groups,

traditional file permissions
XACML, AWS IAM policies, Okta ABAC

Role/Attribute
Management

Centralized role assignment Distributed attribute collection

Audit Complexity Easier to audit More complex audit trails
Risk Management Less precise, may lead to over-

permissioning
More precise control reduces risk

It's worth noting that some systems combine both RBAC and ABAC principles to create a hybrid

approach that leverages the strengths of each model to provide a balance between simplicity and

flexibility in access control.

In addition to that, the organization must also implement:

xiv

• Authentication and Identity management: Verify user identity before any interaction with

the platform and limit access to tools based on user roles. A regular review and update of

access permissions ensures they're appropriate and up-to-date according to organization

employees.

• Authorization and access control: The recommendation is to define access policy based on

user groups(roles) and assign uses to the various groups for users and groups. Then define

an access control list related to groups and users and apply to the resources available on the

data lake.

• Network security: You can establish firewalls and define an IP address range for your

trusted clients. You can also segment your network to isolate the data lake environment

from other systems.

• Data protection: The data lake provides encryption mechanisms to protect the data. Data in

transit can be secure using the industry-standard Transport Layer Security (TLS 1.2) protocol

to secure data over the network.

• Auditing: Implement comprehensive auditing mechanisms to track user activities and data

access. Set up real-time monitoring to detect suspicious activities and potential security

breaches

A.7.3 Tools

Centralized access management through Active Directory (AD) and managing roles and access at

the application level both have their own advantages and disadvantages. The choice between

these approaches often depends on the specific needs and context of your organization. Let's

examine the advantages and disadvantages of each approach and how they relate to implementing

role-based access:

Central Access Management through Active Directory:

Advantages:

1. Centralized Control: Active Directory provides a centralized location for managing user

identities, authentication, and access control across multiple applications. This can

streamline administration and reduce the risk of inconsistencies.

2. Single Sign-On (SSO): Active Directory allows for single sign-on, enabling users to

authenticate once and access various applications without the need for multiple logins. This

improves user experience and security.

3. Scalability: AD is designed to handle large numbers of users and resources, making it well-

suited for enterprises with complex access management requirements.

4. Integration: Many enterprise applications and services can integrate directly with Active

Directory for authentication and authorization, simplifying access management.

Disadvantages:

xv

1. Dependency: A centralized approach means that if there's a problem with the Active

Directory infrastructure, it could impact access to multiple applications.

2. Limited Granularity: While Active Directory supports role-based access to some extent, it

might not provide the same level of fine-grained access control as application-level

management.

Managing Role and Access at the Application Level:

Advantages:

1. Granular Control: Managing access at the application level allows for more fine-grained

control over who has access to specific features and functions within an application.

2. Flexibility: Application-level access control is flexible and can be tailored to the specific

needs of each application. This can be particularly useful when applications have varying

access requirements.

3. Isolation: If a particular application experiences issues with its access management, it won't

necessarily affect the access controls of other applications.

Disadvantages:

1. Complexity: Managing access at the application level can become complex, especially in

organizations with numerous applications. It can lead to duplicated efforts and

inconsistencies in access policies.

2. Increased Administration: Each application's access management needs to be set up and

maintained separately, which can be time-consuming and resource-intensive.

3. Security Risks: If access control isn't well-implemented at the application level, there's a risk

of security vulnerabilities or misconfigurations.

ISN working on windows environment already used an on-premises version of AD (LDAP). Though

some open-source alternatives exist such as: OpenLDAP or 389 Directory Server

User roles and groups on data lake involves defining access permissions and privileges for different

users based on their responsibilities and needs. Here are some examples of user roles and groups

that could be configured

Role/group Description Tools Bucket

administrators - Managing user accounts, configuring security

settings

- Maintaining infrastructure: Update, Upgrade etc.

- Ensuring metadata management, backups

All All

Data engineer - Designing and maintaining data pipelines, ETL

processes, data integration

- Create and manage data pipeline and ETL-related

- Apache NiFi

- Dagster

- Jupyterlab

- raw

-

xvi

Role/group Description Tools Bucket

folders

- Permissions to create and manage scheduled

workflows

- MinIO

- Trino

anonymized

- staging

Data steward - Ensuring data anonymization, adhering to data

governance policies

- Trino

- MinIO

- JupyterLab

- raw

-

anonymized

- staging

- aggregated

Data analyst - Analyzing and generating insights from data,

creating reports and visualizations.

- Developing and maintains data models

- Create and run custom queries and scripts

- MinIO

- Trino

- Jupyterlab (R,

Python, QGIS)

-staging

- aggregated

Public access - Accessing publicly available datasets or reports

- Read-only access to publicly accessible datasets

and reports

- Trino

- Jupyterlab

- aggregated

A.7.3.1 Active Directory

Active Directory (AD) is Microsoft’s directory and identity management service for Windows

domain networks. It was introduced in Windows 2000, is included with most MS Windows Server

operating systems, and is used by a variety of Microsoft solutions like Exchange Server and

SharePoint Server, as well as third-party applications and services.

Source Useful link: what is LDAP authentication

A.7.3.2 OpenLDAP

OpenLDAP Software is an open-source implementation of the Lightweight Directory Access

Protocol(LDAP).LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a

lightweight protocol for accessing directory services, specifically X.500-based directory services.

LDAP runs over TCP/IP or other connection-oriented transfer services. The nitty-gritty details of

LDAP are defined in RFC2251 "The Lightweight Directory Access Protocol (v3)" and other

documents comprising the technical specification RFC3377. This section gives an overview of LDAP

from a user's perspective.

Source

A.7.4 Active Directory Distinguished Name (DN)

The connection between components and Active Directory for user identification relies on the

distinguished name (DN) of users, groups, and organizational units. The DN uniquely identifies each

entry in the directory. Below is the process for retrieving the DN of an organizational unit, user, or

group.

https://www.cyberark.com/fr/what-is/active-directory/
https://www.redhat.com/en/topics/security/what-is-ldap-authentication
https://www.openldap.org/

xvii

To retrieve DN you first need to enable View->Advanced Features

FIGURE A-1 ACTIVE DIRECTORY ADVANCE FEATURE

This brief tutorial🎬 will guide you on how to retrieve the DN for a user, group, or organizational

unit. Below step-by-step diagram shows how to retrieve the DN for user.

Right click the user and select properties as shown in above figure. In the properties, open the

‘Attribute Editor’ tab and find ‘distinugushedName’ property as shown in below figure.

https://www.youtube.com/watch?v=veEA3L7dWZA

xviii

FIGURE A-2 ACTIVE DIRECTORY DISTINGUISHED NAME FOR USER

Similarly, you can retrieve the User Group DN. Just right click on the group as shown in below figure

and follow same step as above by selecting ‘Attribute editor’ tab and find ‘distinugushedName’

property.

xix

A.8 Kubernetes cluster

A Kubernetes cluster is a production-grade container orchestration platform that automates the

deployment, scaling, and management of containerized applications. In a DevOps context, it serves

as the foundation for implementing continuous deployment, microservices architecture, and cloud-

native applications. Using a Kubernetes cluster is not mandatory for deploying data platforms or

other infrastructure components. Whether you should use Kubernetes depends on your specific

requirements and goals. Here’s a breakdown of the advantages and disadvantages of using

Kubernetes, as well as recommendations for when to use it.

Advantages of Using Kubernetes

1. Scalability and High Availability

• Automatic scaling of applications based on demand

• Built-in load balancing and distribution

• Self-healing capabilities for failed containers

• Multi-zone and multi-region deployment support

2. DevOps Integration

• Declarative configuration management

• Integration with CI/CD pipelines

• Rolling updates and rollbacks

• Infrastructure as Code (IaC) support

3. Resource Optimization

• Optimized container scheduling and placement

• Resource quota management

• Automated bin packing

• Cost optimization through resource sharing

Disadvantages of Using Kubernetes

1. Operational Complexity

• Steep learning curve for teams

• Complex networking and security configurations

• Requires specialized expertise for maintenance

• Monitoring and troubleshooting challenges e.g., "Complexity in debugging issues across

distributed systems."

2. Resource Requirements

• Significant infrastructure overhead for small applications

• Higher operational costs for small-scale deployments

• Memory and CPU intensive for the control plane

3. Security Considerations

• Complex security configuration requirements

• Multiple attack surfaces to protect

xx

• Certificate management overhead

• Regular security updates needed

Kubernetes offers significant benefits for managing complex, containerized applications but comes

with added complexity and costs. Whether you should use Kubernetes depends on your specific use

case, application complexity, and operational capacity. For simpler deployments or for those new

to container orchestration, alternative approaches or managed services may offer a more practical

starting point. For large-scale, complex applications requiring advanced orchestration and

automation, Kubernetes can provide powerful solutions.

Below are few tools available to deploy/manage Kubernetes cluster

A.8.1 Kubeadm

Kubeadm is the official Kubernetes cluster bootstrapping tool maintained by the Kubernetes

community. It focuses specifically on the core cluster initialization and management tasks. Its main

strengths lie in its widespread adoption, extensive documentation, and strong community support.

The tool excels at providing a standardized way to create conformant clusters. However, kubeadm

requires more manual configuration for additional components and can involve more complex

setup procedures compared to more automated solutions.

Advantages:

• Official Kubernetes tool with extensive community support

• Well-documented and standardized approach

• Greater flexibility in cluster configuration

• Strong security practices and regular updates

• Wide ecosystem compatibility

Disadvantages:

• A more complex initial setup process

• Requires additional tools for complete cluster management e.g., "Third-party tools for

logging, monitoring, or networking."

• Manual configuration needed for many add-ons

• Steeper learning curve for beginners

A.8.2 KubeKey

KubeKey is an open-source installer developed by KubeSphere that provides a more streamlined

approach to deploying Kubernetes clusters. It combines the installation of Kubernetes and related

cloud-native tools into a single process. The primary advantages of KubeKey include its simplified

deployment process, built-in support for various add-ons and components, and the ability to

manage the full lifecycle of clusters. However, it does have some limitations, such as being less

widely adopted in the community compared to kubeadm and having fewer troubleshooting

resources available.

Advantages:

xxi

• Automated installation of both Kubernetes and common add-ons

• Simplified cluster lifecycle management

• Includes built-in support for air-gapped (offline) environments.

• Easier integration with KubeSphere and related tools

• More streamlined upgrade process

Disadvantages:

• Smaller community compared to kubeadm

• Limited troubleshooting resources

• Less flexibility for customizing individual components

• KubeKey’s features are closely integrated with KubeSphere, potentially limiting its appeal

for standalone Kubernetes users.

A.9 Kubernetes cluster management platform

A.9.1 Rancher

Rancher is an enterprise-grade Kubernetes management platform that enables organizations to run

containers across multiple clusters. It provides a unified control plane for managing both on-premises and

cloud-based Kubernetes deployments.

A.9.2 KubeSphere

KubeSphere is a distributed operating system for cloud-native application management, providing a more

application-centric approach to cluster management. It emphasizes ease of use and includes features

specifically designed for DevOps workflows.

A.9.3 Lens

Lens is an advanced integrated development environment (IDE), and management interface specifically

designed for working with Kubernetes clusters. Unlike Rancher or KubeSphere which are installed in

Kubernetes cluster, Lens is installed in admin workstation that saves resources of the cluster. It provides a

sophisticated graphical user interface that simplifies cluster management and monitoring tasks.

Lens serves as a unified platform for developers and operators to manage multiple Kubernetes clusters

through a desktop application. It offers real-time cluster insights, resource management capabilities, and

integrated terminal access, making it significantly easier to interact with Kubernetes environments

compared to command-line tools alone.

Feature Rancher KubeSphere Lens
Type Full Kubernetes

management platform
Kubernetes distribution &
management platform

Kubernetes IDE &
management tool

Deployment Self-hosted (server-
based)

Self-hosted (runs on
Kubernetes)

Desktop application

Interface Web-based UI Web-based UI Desktop application
Scope Multi-cluster

management
Multi-cluster management Multi-cluster

management

xxii

Feature Rancher KubeSphere Lens
Installation
Complexity

Moderate Moderate to high Low (desktop
installation)

Primary Use Case Enterprise Kubernetes
management

All-in-one platform with
integrated tools

Developer & operator
workstation tool

Multi-Tenancy Strong Excellent (core feature) Limited
User Management Comprehensive Comprehensive Basic
Application Catalog Yes (App Catalog) Yes (App Store) No
Observability Basic + integrations Comprehensive built-in Basic + extensions
CI/CD Via integrations Built-in (DevOps Project) No
Service Mesh Via integrations Built-in (Istio) No
Cluster Provisioning Strong (multiple

providers)
Limited No (connects to

existing)
Developer
Experience

Good Good Excellent (core
focus)

Operations Focus Strong Strong Moderate
Extensions/Plugins Yes Yes Yes (extensive)
Resource
Requirements

Moderate High Low (local only)

Licensing Open Source (Apache
2.0)

Open Source (Apache 2.0) Open Source +
Commercial

A.9.4 Alternatives

1. Portainer: Portainer is an open-source management UI for Docker and Kubernetes. It provides a

simple and easy-to-use interface for managing containerized applications.

2. OpenShift Origin (OKD): OKD (OpenShift Origin) is the open-source upstream project of Red Hat

OpenShift. It provides a Kubernetes-based container platform with additional features for

application development and deployment.

A.9.5 Lightweight Alternatives

1. K3s: K3s is a lightweight Kubernetes distribution designed for resource-constrained environments

and edge computing.

2. Minikube: Minikube is a tool for running a local Kubernetes cluster on your machine. It’s ideal for

development and testing purposes

3. MicroK8s: MicroK8s is a lightweight, single-node Kubernetes distribution developed by Canonical

(the creators of Ubuntu).

Conclusion

The choice between these alternatives depends on your specific needs:

• For Comprehensive Management: If you need extensive features and enterprise-grade capabilities,

tools like Rancher or OpenShift Origin (OKD) offer robust solutions.

• For Simplicity and Lightweight Environments: If you need a more lightweight or local development

solution, K3s, Minikube, or MicroK8s might be more suitable.

xxiii

A.10 Minimum data lake technology stack for Data4Now deployment

checklist

Download checklist

N° Steps Workstation
Master
Node

Worker(s)
Node %completed

0%
1- Prerequisites
This section outlines the essential prerequisites for deploying the minimum Data lake infrastructure,
ensuring that all necessary configurations are in place. It details the collection of critical network and
system information, such as node IP addresses and repository links, to facilitate a structured deployment
process. The workstation setup includes the installation of essential tools and the configuration of
environment variables to maintain a standardized deployment environment. Furthermore, it provides step-
by-step instructions for downloading required binaries, setting up working directories, and configuring both
master and worker nodes.

 1.1- Resource Allocation and Component Distribution

 1.2- Collect Essential Information

 1.3- Workstation Setup

1.3.1- Install the Essential Tools: Git, Lens, Docker-
Desktop

 1.3.2- Establishment of Working Directories

 1.3.3- Configuration of Environment Variables

1.3.4- Downloading Essential Binaries and Cloning the
Repository

 1.4- Configuration on Master Node

 1.5- Configuration on Worker Node

2- Server Preparation 0%
This section outlines the necessary steps to prepare all nodes in the infrastructure for deployment. The
commands below ensure system updates, disable swap memory, and configure kernel parameters
essential for Kubernetes operations.
 Server Preparation

3- Container runtime 0%
This section details the installation and configuration of the container runtime, which is a fundamental
requirement for Kubernetes nodes. The following steps ensure a reliable and efficient installation of Docker
and cri-dockerd.
 Install docker and cri-docker

4- Secure Shell (SSH) Access Configuration 0%
This section outlines the necessary steps to establish secure and password-less SSH access between the
master node and worker nodes. This setup facilitates seamless remote management and communication
between the nodes in a Kubernetes cluster.
 4.1- Generating an SSH Key

 4.2- Distributing the SSH Key

5- Install the Kubernetes Cluster 0%

https://unstats.un.org/unsdwebsite/resourceCatalog/documents/IT-Architecture/Minimum-DL-Installation-Checklist.xlsx

xxiv

N° Steps Workstation
Master
Node

Worker(s)
Node %completed

This section provides a structured approach to setting up a Kubernetes cluster, including installing
necessary dependencies, configuring the cluster, deploying it, and setting up a metrics server for
monitoring resource utilization.
 5.1- Installation of Required Packages

 5.2- Creating and Editing the Cluster Configuration

 5.3- Deploying the Kubernetes Cluster

 5.4- Deploying the Metrics Component

6- Install the Persistent Storage 0%
This section outlines the necessary steps to install and configure persistent storage using Longhorn. These
steps ensure that each node is equipped with the required dependencies, and that Longhorn is correctly
deployed and verified within the Kubernetes cluster.
 6.1- Installation of Required Packages for Longhorn

 6.2- Installation of Longhorn FALSE

 6.3- Verification of Longhorn Deployment

7- Configuring Kubectl on the Workstation 0%
This section provides guidance on configuring `kubectl` on the workstation, ensuring connectivity with the
Kubernetes cluster. The process varies based on whether `kubectl` is newly installed or if an existing
configuration is present.
 7.1- Configuration for a Newly Installed Kubectl

7.1.1- Download the kubernetes config file from the
cluster

 7.1.2- Edit the Kubeconfig File FALSE

 7.1.3- Verify the access to the cluster

7.2- Configuration If an Existing Cluster is Already Set
Up

7.2.1- Download the kubernetes config file from the
cluster

 7.2.2- Modifying the `new-config` File

 7.2.3- Merge both the new and current config files FALSE

 7.2.4- Verify the access to the cluster FALSE

8- Clean-Up Procedures 0%
This section provides guidance on securing the server environment by disabling root SSH login on all nodes,
including both master and worker nodes. Restricting root access enhances security and mitigates
unauthorized access risks.
 8.1- Disabling Root SSH Login

9- Deploy the Minimum Data lake 0%
This section outlines the step-by-step procedure for deploying the essential components of a data lake,
including MinIO for storage, JupyterHub for analytics, and Apache NiFi for data ingestion. The deployment is
performed from the workstation onto a Kubernetes cluster.
 9.1- Deploy MinIO (storage)

 9.2- Deploy JupyterHub (analytics) FALSE

 9.3- Deploy Apache NiFi (ingestion) FALSE

xxv

A.11 Sample skill development recommendations for IT teams

Foundational skills:

• Linux system administration (Shell scripting, package management, user permissions, system
monitoring, etc.)

• Networking basics (IP addressing, DNS, firewalls, SSH, VPN, etc.)
• Version control (Git basics, branching, collaboration workflows, etc.)

Platform and infrastructure

• Docker & Kubernetes (Containerization, Helm charts, kubectl, cluster management, etc.)
• Storage Management (MinIO policies, S3 APIs, persistent volumes, Longhorn, etc.)
• Monitoring & Logging (basic alerting, Lens IDE, Rancher Academy, Prometheus, Grafana, etc.)

Data engineering and integration

• Apache NiFi (Flow design, processors, templates, scheduling, etc.)
• Data formats and API (JSON, Parquet, ORC, data transfer protocols, etc.)
• ETL/ELT concepts (Data loading strategies, data cleaning, data transformation, etc.)

Data analysis and visualization

• JupyterHub & Notebooks (Python/R scripting, pandas, matplotlib, seaborn, etc.)
• Data Science Basics (Descriptive stats, basic ML, data storytelling, etc.)
• SQL & Trino (Querying structured/unstructured data, federated queries)

Security and governance

• Identity & Access Management (Active Directory, LDAP, RBAC, etc.)
• Data Privacy & Protection (Encryption, anonymization, secure data sharing, etc.)
• Governance tools (metadata management, data cataloging, etc.)

More to be added.

xxvi

B. List of Abbreviations
• AD: Active Directory - A widely used proprietary identity and access management system that

reinforces security.

• AI: Artificial Intelligence - Intelligence demonstrated by machines, as opposed to natural intelligence

displayed by humans.

• ANSD: Agence Nationale de la Statistique et de la Démographie - The National Statistical Office of

Senegal.

• API: Application Programming Interface - A set of rules that allows different software applications to

communicate with each other.

• AWS: Amazon Web Services - A cloud computing platform provided by Amazon.

• CAD: Collaborative on Administrative Data - A United Nations initiative focused on administrative

data use in official statistics.

• CKAN: Comprehensive Knowledge Archive Network - An open-source data portal platform.

• CSV: Comma Separated Values - A simple, text-based format for storing tabular data.

• DA-13: Development Accounts 13 - A UN initiative focusing on data innovation and technology.

• DANE: Departamento Administrativo Nacional de Estadística - The National Statistical Office of

Colombia.

• DDI: Data Documentation Initiative - A standard for capturing metadata about research and survey

data.

• ELT: Extract, Load, Transform - A data integration process where data is first extracted from sources,

loaded into a target system, and then transformed.

• ETL: Extract, Transform, Load - A traditional data integration process where data is first extracted

from sources, transformed to fit operational needs, and loaded into a target system.

• FOSS: Free and Open-Source Software - Software that can be used, studied, modified, and

distributed by anyone.

• FTP: File Transfer Protocol - A standard network protocol used for transferring files between a client

and server.

• GDPR: General Data Protection Regulation - A regulation in EU law on data protection and privacy.

• GIS: Geographic Information System - A system designed to capture, store, manipulate, analyze,

manage, and present spatial or geographic data.

• GSO: General Statistics Office - The National Statistical Office of Vietnam.

• HDFS: Hadoop Distributed File System - A distributed file system designed to run on commodity

hardware.

• HTTP: Hypertext Transfer Protocol - The foundation of data communication for the World Wide

Web.

• INE: Instituto Nacional de Estadística - The National Statistical Office of Uruguay.

• INEGI: Instituto Nacional de Estadística y Geografía - The National Statistical Office of Mexico.

• INS: Institut National de la Statistique - The National Statistical Office of Tunisia.

• JSON: JavaScript Object Notation - A lightweight data interchange format that is easy for humans to

read and write and easy for machines to parse and generate.

• k8s: Kubernetes - An open-source platform for automating deployment, scaling, and operations of

application containers.

xxvii

• LDAP: Lightweight Directory Access Protocol - An open, vendor-neutral, industry standard

application protocol for accessing and maintaining distributed directory information services.

• LOD: Linked Open Data - A method of publishing structured data so that it can be interlinked and

become more useful through semantic queries.

• MBS: Maldives Bureau of Statistics - The National Statistical Office of Maldives.

• ML: Machine Learning - A subset of artificial intelligence that provides systems the ability to learn

from data and improve from experience.

• MOU: Memorandum of Understanding - A formal agreement between two or more parties.

• NSA: Namibia Statistics Agency - The former name of Namibia's National Statistical Office.

• NSO: National Statistical Office - Government agencies responsible for collecting, processing, and

publishing official statistics.

• NSS: National Statistical System - The entire network of institutions and entities involved in the

collection, processing, and dissemination of official statistics in a country.

• OAuth2: Open Authorization 2.0 - An industry-standard protocol for authorization.

• ORC: Optimized Row Columnar - A columnar storage format designed for high-performance

analytics.

• PBAC: Policy-Based Access Control - A method of managing user access to resources based on

policies.

• PDI: Pentaho Data Integration - A data integration tool that enables ETL from a variety of sources.

• PET: Privacy Enhancement Technologies - Technologies that help protect data privacy.

• PxWeb: A tool for disseminating statistical data on the web.

• QGIS: Quantum Geographic Information System - An open-source geographic information system.

• RBAC: Role-Based Access Control - A method of regulating access to computer or network resources

based on roles.

• S3: Simple Storage Service - Amazon's object storage service.

• SDMX: Statistical Data and Metadata eXchange - An international initiative to standardize and

modernize the exchange of statistical data and metadata.

• SFTP: Secure File Transfer Protocol - A network protocol that provides file access, file transfer, and

file management over any reliable data stream.

• SSL/TLS: Secure Sockets Layer/Transport Layer Security - Protocols for establishing authenticated

and encrypted links between networked computers.

• SSH: Secure Shell - A cryptographic network protocol for operating network services securely over an

unsecured network.

• Stats SL: Statistics Sierra Leone - The National Statistical Office of Sierra Leone.

• UNESCAP: United Nations Economic and Social Commission for Asia and the Pacific - A regional

commission that promotes economic and social development in the Asia-Pacific region.

• VPN: Virtual Private Network - A service that encrypts internet connections to protect online privacy.

• XML: eXtensible Markup Language - A markup language that defines a set of rules for encoding

documents in a format that is both human-readable and machine-readable.

	Executive Summary
	1 Introduction
	1.1 Background
	1.2 Goals and objectives
	1.3 Guiding principles for the modernization of IT architecture
	1.4 Reference architecture for data innovation

	2 Few components of open technology stack for data
	2.1 Overview
	2.2 Data ingestion/collection
	2.2.1 Few considerations:
	2.2.2 Data ingestion tools

	2.3 Data storage and management
	2.3.1 Few considerations in data lake storage:
	2.3.2 Data storage platforms:
	2.3.3 Data storage formats:
	2.3.4 Data organization strategy
	2.3.5 Data access management

	2.4 Data processing and analytics
	2.4.1 Few considerations:
	2.4.2 Data processing tools

	2.5 Data visualization and dissemination
	2.5.1 Few considerations from a data lake Perspective:
	2.5.2 Data visualization tools

	2.6 Security and Authorization
	2.6.1 Few considerations:

	2.7 DevOps and Containerization
	2.7.1 Kubernetes cluster
	2.7.2 Alternative Approaches

	3 Basic requirements for minimum data lake technology stack used in Data4Now
	3.1 Overview
	3.2 Skills requirements
	3.3 Platform
	3.3.1 On-Premises Infrastructure
	3.3.2 Cloud Infrastructure

	3.4 Operating system
	3.5 Hardware requirements
	3.5.1 Apache NiFi
	3.5.2 MinIO
	3.5.3 JupyterHub

	3.6 Sample use-case to estimate Hardware requirement

	4 Cases Studies
	5 Technical implementation guide for minimum data lake technology stack used in Data4Now
	5.1 Overview
	5.2 Checklist
	5.3 Deployment
	5.3.1 Prerequisites
	5.3.1.1 Resource Allocation and Component Distribution
	5.3.1.2 Collect Essential Information
	5.3.1.3 Workstation Setup
	5.3.1.3.1 Install the Essential Tools: Git, Lens, Docker-Desktop
	5.3.1.3.2 Establishment of Working Directories
	5.3.1.3.3 Configuration of Environment Variables
	5.3.1.3.4 Downloading Essential Binaries and Cloning the Repository

	5.3.1.4 Configuration on Master Node
	5.3.1.5 Configuration on Worker Node

	5.3.2 Server Preparation (All Nodes)
	5.3.3 Container Runtime Installation
	5.3.4 Secure Shell (SSH) Access Configuration
	5.3.4.1 Generating an SSH Key on the Master Node
	5.3.4.2 Distributing the SSH Key to Worker Nodes

	5.3.5 Installation of Kubernetes Cluster
	5.3.5.1 Installation of Required Packages
	5.3.5.2 Creating and Editing the Cluster Configuration
	5.3.5.3 Deploying the Kubernetes Cluster
	5.3.5.4 Deploying the Metrics Component

	5.3.6 Installation of Persistent Storage
	5.3.6.1 Installation of Required Packages for Longhorn
	5.3.6.2 Installation of Longhorn from the Master Node
	5.3.6.3 Verification of Longhorn Deployment

	5.3.7 Configuring Kubectl on the Workstation
	5.3.7.1 Configuration for a Newly Installed Kubectl
	5.3.7.1.1 Download the kubernetes config file from the cluster
	5.3.7.1.2 Edit/Modifying the Kubeconfig File
	5.3.7.1.3 Verify the access to the cluster

	5.3.7.2 Configuration When an Existing Cluster is Already Set Up
	5.3.7.2.1 Download the kubernetes config file from the cluster
	5.3.7.2.2 Modifying the new-config File
	5.3.7.2.3 Merge both the new and current config files
	5.3.7.2.4 Verify the access to the cluster

	5.3.8 Clean-Up Procedures
	5.3.8.1 Disabling Root SSH Login

	5.3.9 Deployment of the Minimum Data Lake Stack
	5.3.9.1 Deploy MinIO (Storage)
	5.3.9.2 Deploy JupyterHub (Analytics)
	5.3.9.3 Deploy Apache NiFi (Ingestion)

	5.3.10 Integrate Active Directory
	5.3.11 Using the tools

	A. Annexes
	A.1 Data4Now: IT Guiding Questionnaire
	A.2 Data ingestion tools
	A.2.1 Coding tools
	A.2.2 Low code Tools

	A.3 Data storage format
	A.3.1 Parquet

	A.4 Data Virtualization
	A.5 Data processing tools
	A.5.1 Collaboration Platform – JupyterHub (Server)
	A.5.2 Collaboration Platform - JupyterLab
	Geo-spatial analysis

	A.5.3 Framework - Apache spark
	A.5.4 Framework – Dask
	A.5.5 DuckDB
	A.5.6 Language - Python
	A.5.7 Language - R
	A.5.8 OpenRefine
	A.5.9 Geospatial - QGIS

	A.6 Data orchestration tools
	A.6.1 Dagster:
	A.6.2 Apache Airflow:

	A.7 Security and authorization
	A.7.1 Functionalities to consider in security
	A.7.2 Access Control
	A.7.3 Tools
	A.7.3.1 Active Directory
	A.7.3.2 OpenLDAP

	A.7.4 Active Directory Distinguished Name (DN)

	A.8 Kubernetes cluster
	A.8.1 Kubeadm
	A.8.2 KubeKey

	A.9 Kubernetes cluster management platform
	A.9.1 Rancher
	A.9.2 KubeSphere
	A.9.3 Lens
	A.9.4 Alternatives
	A.9.5 Lightweight Alternatives

	A.10 Minimum data lake technology stack for Data4Now deployment checklist
	A.11 Sample skill development recommendations for IT teams

	B. List of Abbreviations

