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Section 1
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Выступающий
Заметки для презентации
We have been working on various topics related to modernisation such as GSBPM, strategic communication and cloud for official statistics
One of major recent efforts are focused on AI.
The topic of AI started surfacing when we had a big data project about 10 years ago. 
But the topic only gained a real momentum later with an HLG-MOS project on Machine Learning in 2019. 
Back then, the focus was on machine learning, a subset of AI system that involves the use of algorithms and learning from data. 
And since last year, we started working on Generative AI, another subset of AI system that is specialized on generating contents such as texts and images. 
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Выступающий
Заметки для презентации
This continuous focus on AI has been in response to rise of AI in the last few years. 
One notable characteristic with this recent development is that AI has become household tool as we could see from the viral adoption of Chat GPT. 
Before, only experts with special skillset can work with AI. But now, anyone with access to internet can use it. 
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Выступающий
Заметки для презентации
AI development is so fast that there was an open call last year to pause research on more advanced AI models. 
We already started seeing people talking about AI is losing hype
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Выступающий
Заметки для презентации
This phases of initial excitement and disillusion has actually happened for many new technologies or innovations when they first came out

https://en.wikipedia.org/wiki/Hype_cycle
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Выступающий
Заметки для презентации
We indeed had gone through similar phases with machine learning. 
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Выступающий
Заметки для презентации
The importance of focusing on business value, treating AI as a tool for broader objective of modernisation
In the rest of this presentation, will cover specific examples from statistical organisations where AI has been used to realize these benefits, then discuss the challenges associated with the use of AI in NSOs and share some lessons learned.
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Выступающий
Заметки для презентации
For machine learning, areas that are shown to be most effective are those with manual and repetitive tasks. 
And these areas can benefit greatly from automation with ML 
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Выступающий
Заметки для презентации
One example is classification. 
This is where we classify textual responses into certain codes in a statistical classification system. 
Many responses can be free-text. 
Statistical organisations have many such classification systems. 
This sub-process is very important for the production of statistics, because only after this, data to be systematically aggregated and compared in the downstream tasks. 
Traditionally, this classification used to be done through a complex rule-based system or done manually by human coders. 
Large part of this manual work is quite tedious, but still costly
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Выступающий
Заметки для презентации
And with ML, this can be done more efficiently.
Based on a set of text descriptions and corresponding high-quality ground truth codes, we can build a machine learning model and use this model to predict which codes to assign for a new set of product descriptions.
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Выступающий
Заметки для презентации
This is by far, the most popular and significant use cases of AI that we have seen in the statistical organisations 
Because the legacy system (rule-based system or human) is too resource-intensive, and machine learning model is shown to be quite accurate for this type of classification tasks for short texts. 



https://statswiki.unece.org/display/ML/Studies+and+Codes?preview=/285216428/290358696/ML_WP1_CC_Canada.pdf
https://statswiki.unece.org/download/attachments/293535864/WS_T1_Brazil_Final_Report_ML_UNECE.pdf?version=1&modificationDate=1639756810336&api=v2
https://datasciencecampus.ons.gov.uk/classifai-exploring-the-use-of-large-language-models-llms-to-assign-free-text-to-commonly-used-classifications/
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Выступающий
Заметки для презентации
The benefit of automation is really prominent when it comes to big data. 
Manually classifying this amount of data is extremely resource-intensive, so AI can be a key to unlock the potential of new data sources such as scanner, web-scrapped or bank transaction data and offer new statistical products and services based on them 

https://statswiki.unece.org/display/ML/WP1+-+Pilot+Studies?preview=/285216428/290359148/WP1_Imagery_Mexico_Presentation_April2020.pdf
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Выступающий
Заметки для презентации
There are other examples in the production process where machine learning is shown potential to help NSOs

https://statswiki.unece.org/download/attachments/293535864/ML2021_September_BLS%20record%20matching.pdf?version=1&modificationDate=1632928582677&api=v2
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.58/2020/mtg1/SDE2020_T1-A_Norway_Jentoft_Presentation.pdf
https://statswiki.unece.org/download/attachments/338329823/ML2022_Web_TurkStat.pdf?api=v2
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Выступающий
Заметки для презентации
Moving on to examples using generative AI 
The large language models are particular good at understanding context and meaning of languages, and this includes not only human languages but also software languages.
According to a recent CES survey conducted on generative AI, one of most popular use case is around coding and IT development
Indirect impact to many other working areas in NSOs that require coding, such as software development, data analysis and processing. 



https://my.visme.co/v/z4nodvzv-qzoe99
https://github.com/CSOIreland/Code-Transcompiler-using-LLMs-public
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https://unece.org/sites/default/files/2024-07/5_2_3_AI%20and%20LLM_IMF_BertKroese.pdf
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Give 3 key takeaways from the 2013 Review of Maritime Transport 2024-04-15 10:55

L The global economy remains fragile, with high inflatian, geopolitical risks, and debt burdens
constraining growth prospects. The outiook for global trade is pessimistic, with expected

annual growth rates of L. 7% in 2023 and -0.6% for the second quarter of 2023,

The shipping industry continues to face disrup

lons and uncertainty, with shifts in the
geography of maritime trade, continued disruptions to shipping and ports, and high fuel
costs impacting energy and food security. The outlook for shipping in 2023 is uncertain, with
decarbonization efforts and fuel transition pathways presenting bath opportunities and

challenges for the industry.

3. The Review highlights the ance of dig and electronic trading systems in
facilitating masitime trade and transport, with the adoption of such systems expected to
increase efficiency and reduce costs for stakeholders. However, the Review also notes the
need for cantinued effors to address eybersecurity risks and ensure the interoperability and

compatibiity of different systems.

Sources:
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pessimistic, with an expected annual growth rate of L.7%, and trade growth is projected to
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Выступающий
Заметки для презентации
General purpose models such as GPT is very powerful, but they don’t have access to most up to date information, or knowledgebase you want your responses to be based on. 
Instead of entirely relying on general purpose models, we can combine it with existing knowledgebase using method called retrieval augmented generation. 
UN Trade and Development built internal search tool using large language model which generates texts based on specific publication, so if staff wants to do a research, they will get responses based on this publication, not just generic texts or even worse, false or hallucinated results.   

https://unece.org/sites/default/files/2024-05/ECE_CES_2024_23_E.pdf

Section 1 Section 2 Section 3

ROMMYHUKaLU WA

e ————————

Statistics Indonesia (Al + C

MOS)

Statistics Canada (Al+Comm Task Team under HLG-MOS)

=N
(¢ UNECE

e PacTywmim akLEHT Ha

MHONBUAYA/IbHOU
KOMMYHUKaLUUK

[eHepauua
nsobpaxkeHun/ayamo/
BUAOEO

[eHepauua
KOMMYHUKAUMNOHHbIX
MaTepunasios B
COOTBETCTBUU C
onpegeneHHbIMuU
CTUNAMMN N TOHOM

morw]r\r' <A
Al 1 1bl-ql~§



Выступающий
Заметки для презентации
Ability of generative AI to generate not only texts but images and videos is found to be extremely helpful for communication experts. 


https://unece.github.io/genAI/Resources/StatisticsIndonesia_2024_03_Comm.pdf
https://unece.github.io/genAI/Resources/StatisticsIndonesia_2024_03_Comm.pdf
https://vimeo.com/statcanvideo/review/982142762/57e7b37f68
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Section 1

KayecTBoO

United Nations National Quality Assurance Framework quality principles
and supporting Fundamental Principles of Official Statistics

Talsl+ls]s]s]als]n]

Level A: Managing the statistical system

Quality principles

1: Coordinating the national statistical system *
- Managing relationships with data users,

43t providess and ather stakeholders * * o o
3:Managing statistical standards *
4 Assuring professional independance O =

5: Assuring impartiality and objectivity el aafE el e E ©) o]

62 Assuring transparency * o

T- Assuring statistical confidentiality and data *

security

B Assuring commitment ta quality *

%: Assuring adequacy of resources o

10: Assuring methedological soundness * @] G |5
11: Assuring cost-effectiveness * (o]
;Zm?m.':f appropriate statistical - o

13; Managing the respendent burden *

S [E

14: Assuring relevance

15: Assuring accuracy and reliability

*

*

16: Assuring timeliness and punctuality *
17: Assuring accessibility and clarity *
*

18: Assuring coherence and comparability

19: Managing metadata

UN National Quality Assurance Framework
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A quality framework for statistical algorithms

Section 3

Article type: Research Article

Authors: Yung, Wesley® " | Tam, Siu-Ming® | Buelens, Bart* | Chipman, Hugh? | Dumpert, Florian® | Ascari,
Gabriele” | Rocci, Fabiana' | Burger, Joep® | Choi, InkKyung"

Affiliations: [a] Statistics Canada | [b] National Institute of Applied Statistical Research, University of
Wollongong, Wollongong, NSW, Australia | [c] Viaamse Instelling voor Technologisch Onderzoek (VITO) |
[d] Department of Mathematics and Statistics, Acadia University, Canada | [e] Federal Statistical Office
of Germany | [f] Italian National Institute of Statistics | [g] Statistics Netherlands | [h] United Nations
Economic Commission for Europe

Correspondence: [*] Corresponding author: Wesley Yung, Statistics Canada. Tel.: +1 613 404 2203; Fax:
+1 613 951 1462; E-mall: Wesley.Yung@canada.ca.

Abstract: As national statistical offices (NSOs) modernize, interest in integrating machine learning (ML)
into official statisticians’ toolbox is growing. Two challenges to such an integration are the potential
loss of transparency from using “black-boxes”and the need to develop a quality framework. In 2019,
the High-Level Group for the Modernisation of Official Statistics (HLG-MOS) launched a project on
machine learning with one of the objectives being to address these two challenges. One of the outputs
of the HLG-MOS project is a Quality Framework for Statistical Algorithms (QF4SA). While many quality
frameworks exist, they have been conceived with traditional methods in mind, and they tend to target
statistical outputs. Currently, machine learning methods are being looked at for use in processes
producing intermediate outputs, which lead to a final statistical output. Therefore, the QF4SA does not
replace existing quality frameworks; it complements them. As the QF4SA targets intermediate outputs
and not necessarily the final statistical output, it should be used in conjunction with existing quality
frameworks to ensure that high-quality outputs are produced. This paper presents the QF4SA, as well
as some recommendations for NSOs considering the use of machine learning in the production of
official statistics.
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Выступающий
Заметки для презентации
NSOs have established and used rigorous quality standards such as NQAF. 
If AI is to be used for official statistics, it should meet a certain quality standard. 
Establishing a common understanding on the quality for ML was one of main objectives of the ML project back in 2019. 
The international efforts results in a set of quality dimensions – accuracy, explainability, reproducibility, timeliness and cost-effectiveness.
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Выступающий
Заметки для презентации
Another challenge is around moving a prototype AI model into a production. 
Building a good quality AI model is a challenge, but there are many factors to consider to integrate this model with regular business process in an organisation. 
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Выступающий
Заметки для презентации
During experimental stage, the focus is usually at demonstrating the validity of AI solution. The development team is usually small to make agile and quick testing possible. Data set is also relatively small. Model can be sitting on the developer’s laptop.
But AI solution in production requires much stronger quality control, involves much bigger group of people including users and IT managers. 
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Organisational aspects of implementing ML
based data editing in statistical production

HLG-MOS ADSaMM Group task team on ML editing
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Section 4

Jourrmy from Haching Learning Experimant o Preduction

5. Journey from Machine Learning Experiment
to Production
5.1. Introduction

The pilot studies in Chapter 3 demonstrated the value added of madhine learning (ML} in
improving the quality of official statistics, for example, by increasing scouracy, redudng
processing tirme or making data more consistent. While these pilot studies can be helpful
in eonwincing stakeholders about the potential of machine learning, integrating the
machine learning solution, even with its proven effectiveness and validity, inte
production has cften turned out i be very difficult and time-consurming. Unfortunately,
many machine learning =olutions from experiments could not complete this journey and
end up being beft on the shelf.

The difficulty of meving machine leaming solutions to production is experienced widely
across sectors and domains. For examiple, Venturebeat reparted in 2015 that "87% of
deta scispce projects never make it bo production ™™, In its 2020 State of Enterprise
Machine Learning, Gartner showed that "18 parcent of companies are taking longer than
50 deys” to deploy a machine learning model™. The situatien is arguably more
challenging for statistical organisations that are public arganisations as well as primary
producers of official statistics. The official statistics are required te provide not only
accurate but also reliable and (bemporally and spatially) comparable portraits of the
soclety based on sclentific standards®™. As changes in the methods and data could
impact these gualities that statistical crganisstions have maintained, the process of
adopting new methods and data seurces inte production can be often slow and difficult.

For & machine learning solution to make it into production, ane should examine what
lays ahead and carefully plan accordingly to act pre-emptively and avoid unnecessary
delays. To operaticnalise the machine leaming solution, one needs to go beyend simply
demonstrating that the solution works. There are organisational, techinical and cultural
challenges to owercome. Firstly, machine learning requires a multi-disciplinary
wollaboration; it involves not only data science, but also subject matter expertise, IT
support as well as sound statistical comparisen. The survey conducted in 2020 through
the Machine Lesrning Project Work Package 3, for exarmple, showed that "coordéination
between internal stekeholders” s the mest significant facter that Imits the crganisaticn
from w=ing machine learning (Box 5.1). Also, while the "exparimant envirenment” often
has maore relaxed conditions, once the machine learning solution is to ke moved to the
“production environment”, it needs to be embedded into software or system that is
already wsed in the production. Obtaining the permission or security clearance for
software or hardware nesded for the machine l=arning solution is often a lengthy process
whidh can stall the operationalisation. Alse, autemating status-guo manual processes by
machine learning inevitably impacts the regular work of human staff and this makes it
hard to abtain buy-in about the machine learing solution if consultation and
communication with stakehckders did not take place in the early stage of the journey.

In this Chapter, typical steps that statistical organisations would take from the machine
lzarning experiment to its deployment in preduction are described with sorme of technical
and organisational issues and constraints often experienced in each stage. Note that,
while the steps are in the logical arder, they do not need to be fallowed in the sequential

proguction:

1 hitps - ffalgor thmis. comy'state-of -mi

“ Fundamental Frincipies of Oficial Statistics

Eifps: unstats, un. orgtunsd dres g pianderingioles AE0K

ML for Official Statistics



Выступающий
Заметки для презентации
This issue around moving AI solution from experiments into production was relatively unknown in the beginning. 
There are now compilation of several lessons learned and best practices on this aspect such as what are the key steps to move AI solution into production, how the work distribution would look like and so on. 

https://unece.org/sites/default/files/2024-02/Data%20editing%20of%20ADSaMM%20group%202023.pdf
https://unece.org/sites/default/files/2022-09/ECECESSTAT20216.pdf
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HaBblKU

e People with Al skills are in high demand
everywhere

* There are limitations for recruitments as public
organization

e Jltogn c HaBblkamm paboTbl ¢ U BocTpeboBaHbI
Be3ae

e CyLLEeCcTBYIOT orpaHMyeHua ana Habopa B
rocyaapcTBeHHble OpraHmM3aumm

* [loBbiWeHUe KBafIl/I(I)I/IKaLI,I/II/I

* AKUEHT Ha TOM, YyTo moryT npeanoxutb HCC (Hanpumep,
obuwecTBeHHOe 61aro, AaHHblE)

e [TapTHepcTBO (Hanpumep, KOHCOPLMYM OOLLLECTBEHHOCTU U
aKaJeMn4ecKnx Kpyros)
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icnonb3oBaHne NN ana oduumaibHOMU
CTAaTUCTUKM T
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[Tpobnema HaxoXxaeHus
opuymanbHbIX CTAaTUCTUYECKUX

naHHbIX B N

e [Ina N nobble gaHHble
CYMUTaKTCA OANHAKOBO
HaOEeXHbIMU

* YniydweHune: Tenepb
yKa3blBaeTCcA MCTOYHUK

Source: ChatGPT by Dalle modertsials
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Выступающий
Заметки для презентации
How to get official statistics through to ChatGPT?
The problem did not appear with AI, was there already with search engines
May get different figures each time

The table I provided focuses on a few key CIS countries with available detailed economic data. While there are 11 members in the Commonwealth of Independent States (CIS), complete and consistent data for all countries (like Armenia, Azerbaijan, Kyrgyzstan, Tajikistan, Turkmenistan, and Moldova) can be challenging to access across all years. In some cases, the data is either sparse, outdated, or reported inconsistently depending on national statistical agencies and economic transparency.
To get a more complete view, we would need specific reports from CIS-Stat or other organizations that specialize in regional economic analysis, which may offer further details on GDP and economic indicators for smaller or less economically prominent CIS countries.
If you'd like, I can continue searching for more data or direct you to the CIS-Stat database where more country-specific details might be accessible. Would you like that?

The reliability of GDP data for CIS countries, including what I provided earlier, depends on the sources from which it is derived. Economic data from CIS-Stat, national statistical agencies, and international organizations like the World Bank, IMF, and OECD is generally considered reliable. These institutions follow international methodologies and standards for reporting economic indicators.
However, there are several factors that can affect the precision and reliability of data, especially in regions like the CIS:
Political Factors: Some countries may manipulate or delay the release of official data due to political reasons, especially if economic performance is weak.
Economic Transparency: Countries like Russia, Kazakhstan, and Uzbekistan tend to have more robust statistical reporting mechanisms. However, in smaller or less transparent CIS countries, such as Turkmenistan or Belarus, the reliability may vary depending on access to accurate data collection.
Data Timeliness: Reports can be delayed, and projections may be based on older data, especially during volatile times like geopolitical conflicts (e.g., Russia-Ukraine) or periods of significant inflation.
International vs. National Sources: International bodies like the World Bank and IMF often adjust national data to fit global standards, which can sometimes lead to differences between national statistics and those published internationally.
To ensure the reliability of any economic data, it’s often best to cross-check it across multiple trusted sources (national statistical agencies, CIS-Stat, World Bank, IMF) and review methodology notes when available.
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NN onsa opnumanbHOW CTaTUCTUKNA

Some final remarks

e Al may not transform NSOs overnight, but can help modernise in various ways
e Concrete use cases from NSOs

e Fully integrating Al is a long journey

e Sharing and collaboration is key to facilitating Al adop

HekoTopble 3akNo4YnTENbHbIE 3aMeYaHnsA

* NN He moxeT npeobpa3oBaTtb HCC B ogHOYaCbe, HO MOXKET MOMOYb
MOAEPHU3NPOBATb Pa3/IMYHbIMM CTOCObamm

* KOHKpeTHble npumepbl ncnonbiosaHma s HCC
e [TlonHasa uHterpauma NN — ato ponrmm nyTb
e OBMEH 1 COTPYAHMNYECTBO — BaXXHbiK GaKTOP Ha NyTH K npuHatuio U
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NCTOYHUKU e

Machine Learning
for Official Statistics

Large Language Models .
for Official Statistics

Machine Learning for Official Statistics Home

hite Paper

s ERACN s

UMNECE HLG-MOS

+ Machine Learnin
@ for Official Statlsti%s
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Statistics Wiki on ML

Generative Al use cases in official statistics

ML for Official Statistics (2021)| | Ms for Official Statistics (2023)

This page cantains generative Al use cm » national and mu nmlu -m»nl arganizationt presented at various relevant mestings. If
o have any use case / research you wish to add to this list, please submi 8 pull recuest to Lhe dats file o0 github o lh.._..u.m
List of use cases

[

ECEarsmsn
@ Economic amd Soclal Councll e e

CES paper on compilation of
Al initiatives under HLG-MOS
(April 2024)

rnedorstos

wﬁ O Github repo on generative Al use
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https://statswiki.unece.org/display/ML/Machine+Learning+for+Official+Statistics+Home
https://unece.org/sites/default/files/2022-09/ECECESSTAT20216.pdf
https://unece.github.io/genAI/
https://unece.github.io/genAI/
https://unece.org/sites/default/files/2023-12/HLGMOS%20LLM%20Paper_Preprint_1.pdf
https://unece.org/sites/default/files/2024-04/ECE_CES_2024_17_E.pdf
https://unece.org/sites/default/files/2024-04/ECE_CES_2024_17_E.pdf
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